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Table 1: Broad-band filter-set used in this paper.

Telescope/Camera  Filter Name A, (um)  Ref.

GALEX FUV 0.153 a age
NUV 0.231 a
U 0365 b e 15 0
B 0.44 b Tan =3 GIT
SDSS g 0.475 a P [t &
Vv 0.55 b 7 =
SDSS I 0.622 a
SDSS i 0.763 a ~
2ZMASS J 1.25 b 5
H 1.65 b A
Spitzer FR?AC 1 % (]‘1 (I::' ? : 1 6 v 10 12
o IRAC2 45 ¢ ——
IRAC4 8 d Fig. 1: Illustration of the truncated delayed SFH implemented
WISE 3 12 d in CIGALE. The purple dashed line represents a normal delayed
4 3 d SFH with 7., =5 Gyr, without truncation. The red solid line is
MIPS] 24 e the truncated delayed SFH.
MIPS2 70 g
Herschel PACS green 100 f
PACS red 160 f
PSW 250 g
PMW 350 o
PLW 500 o
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Fig. 31 Impact of the two paramelers, 826, q,, (upper pancl) and
rrew Uower panel), on the SED considenng & Tawwm of 100Gy
SEDs are color coded according to the value of the free param-
cter. For clarity, we only show in this plots models with #g
Towegr tham (L.45, AL the bottom of each panel, we show the Gilees
of GALEX (red), SD55, and 2MASE.
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Fig. A1) Dhstribution of the output parameters obtained from
the SED fitting procedure with CIGALE, The results for the nor-
mal galaxy sample are shown in grey while the results for the
Hi-deficient sample are shown in red.
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ABSTRACT

We investigate the degree to which the inclusion of baryonic physics can overcome two long-standing
problems of the standard cosmological model on galaxy scales: (i) the p]:{)bl{*m of satellite planes
around Local Group galaxies, and (ii) the “too big to fail” problem. By (‘{)mparmg (11‘-:511’):1131{)11:11 and
dissipationless simulations, we find no indication that the addition of baryonic physics results in more
flattened satellite distributions around Milky-Way-like systems. Recent claims to the contrary are
shown to derive in part from a non-standard metric for the degree of flattening, which ignores the
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2. SATELLITE PLANE PROBLEM

The satellite plane problem for the eleven classical
MW satellite galaxies' can be summarized as follows:
The (three-dimensional) positions of the MW satellite
galaxies are distributed such that they all lie close to
one common plane which has a root-mean-square (rms)
height of 19.6 kpc and a rms minor-to-major axis ratio
of ¢/a = 0.182. Most of these satellites have orbital
planes which are closely aligned with the plane defined
by their position and they also share the same orbital
direction (they co-orbit). This is indicated by the close
clustering of 8 out of 11 orbital poles (directions of an-
gular momentum) close to one normal vector describing
the orientation of the best-fitting plane. In addition, one
of the remaining three of the 11 orbital poles is directed
along the opposite pole (i.e. retrograde relative to the 8
others).

Therefore, the defining characteristics of the satellite
plane problem are that:

e the satellites are distributed in a highly flattened,
planar structure in three-dimensional space,

e the majority of the satellites co-orbit in the same
sense,

e and these satellites orbit within the plane, indicat-
ing that the plane is not just a transient alignment.
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Figure 2. Upper panel: The orbital poles of the 11 brightest (‘classical’) MW satellites for which PMs are measured (green dots with
green great-circle segments indicating the lo-uncertainties) are plotted in Galactic coordinates. Also shown are the normal to the best-
fitting plane of the 11 classical MW satellites (light magenta square), the VPOS normal (dark magenta open square with plus sign), the
normal to the plane fitted to the MW globular clusters classified as young halo objects (blue open diamond with plus sign), the average
orbital pole direction (dark green open circle with plus sign, using the most-recent determination from an updated list of streams in
Pawlowski & Kroupa 2014), the average direction of all MW stream normals (dark red hexagon with plus sign, from Pawlowski & Kroupa
2014), and the stream normal of the Magellanic Stream (small light-red hexagon). Lower panel: The same orbital poles are plotted in a
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Figure 4. Cumulative distribution of (¢/a)ieq and (¢/a)eq
axis ratics as in Fig. 1, but for satellites in the ELVIS
suite of dark-matter-only simulations of Local Group analogs
(Garrison-Kimmel et al. 2014). The blue lines indicate the range
of (¢/a)ea = 0.34 to 0.67 reported by S14 for the hydrodynam-
ical simulations including baryonic physics, determined using the
reduced Tol. We do not know the shape of the cumulative distri-
bution between these points.
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Figure 5. Cumulative number of satellites (sub-halos or galaxies)
as a function of their maximum circular velocity tmax. The data
for the EAGLE simulations as presented in S14 were extracted
from their figure 3. These are averages of the 12 simulations of
Local Group equivalents analyzed by S14. The two upper (grey)
lines show the cumulative sub-halo number for their dark-matter-
wanlsimualatiang the freo lower, fred and_orean Llionee the cumunla
tive number of luminous satellite galaxies for the MW and M31
equivalents. The magenta crosses are the old vpax estimates for
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