Реферат статей Петти и др. (2014, 2015). Морфология Млечного Пути. Реконструкция L-V диаграмм

А. М. Мельник

The morphology of the Milky Way – I. Reconstructing CO maps from simulations in fixed potentials

Alex R. Pettitt, Clare L. Dobbs, David M. Acreman and Daniel J. Price

1 School of Physics and Astronomy, University of Exeter, UK 2 Monash University, VIC 3800, Australia

Авторы предполагают, что наша Галактика имеет спиральные рукава типа "grand design". Используя "smoothed particle hydrodynamics (SPH) " код, они моделируют движение газа в диске включающем бар и/или спиральные рукава, заданные аналитически. Сравниваются наблюдательные и модельные L-V диаграммы полученные на основе 3D кода переноса излучения. Рассмотренные модели воспроизводят почти все особенности (L-V) диаграмм, но не все сразу. Модели m=2 не воспроизводят всех особенностей, а m=4 модели создают слишком яркие детали во внутренней области Галактики "too bright local emission in the inner Galaxy". Наилучшее согласие наблюдается для скорости бара 50-60 км/с/кпк, скорости спирального узора 20 км/с/кпк, ориентации бара θ_{h} =45°, и закрутки спиральных рукавов i= 10–15°.

Longitude–velocity map of brightness temperature of the CO

(J = 0-1) transition (Dame, Hartmann & Thaddeus 2001)

Спиральная структура Галактики из работы Жоржелина и Жиржелина (1976)

Рукав Киль-Стрельца – основной

Спиральный узор Галактики из работы Валли (2008)

По сравнению с Ж&Ж (1976)

Спиральный узор

- 1. Более регулярный
- Рукава делают оборот более чем 360° вокруг центра

Вклад диска, балджа и гало в модельную кривую вращения

Кривые угловых скоростей модельного диска, угловые скорости бара и спиральных рукавов

7

Начальное распределение газа в модельном диске

Sanders, Scoville, Solomon 1985

Химия

Каждая SPH частица имеет массив, отражающий содержание различных элементов

5 10⁶ SPH particles

В начальный момент все частицы содержат 100% HI

H2 формируется на поверхности пылинок и разрушается фотодиссоциацией, которая определяется поглощением и количеством H2 (column density)

 $C \Pi + H_2 \rightarrow CH_2^+ + \gamma$,

 $O_I + CH_X \rightarrow CO + H_X + \gamma$,

В моделях поддерживается начальное содержание CII и OI

Доля H2 и CO как функция плотности SPH частицы

Плотность SPH частицы

Создание I-v диаграмм

Программа TORUS создает карту яркостных температур Tb из модельного распределения частиц по диску.

- 1. Создание L-B-V "data cubes".
- 2. Обработка согласно массе на одну ячейку, имеется порог.
- 3. Рассматриваются различные лучи зрения, ведущие к наблюдателю и различные диапазоны скоростей.
- 4. Как только луч проходит через ячейку,

его интенсивность на частоте v обновляется

$$I_{\nu}' = I_{\nu}e^{-d\tau} + \frac{\epsilon_{\nu}}{\kappa_{\nu}}\left(1 - e^{-d\tau}\right),$$

Через непрозрачность (к), испускательную способность (ε) и оптическую толщу (dτ) каждой ячейки.

- 5. Переход к $T_B = I_{\nu} \lambda^2 / 2k_B$
- 6. Интегрирование по широте |B|<2°.

Количественный критерий соответствия:

$$Fit = \frac{\sum_{\text{pixels}} |T_{B,\text{synth}} db - T_{B,\text{Dame}} db|}{n_{\text{pixels}}}$$

Т_в – яркостная температура

n_pixels – число пиксель с ненулевым излучением

Пиксель – 0.125° на 1 км/с ← такое разрешение у Дейма и др. (2001)

Бар Wada & Koda (2001)

$$\Phi_{r,W}(r,\phi) = \Phi_0 \cos\left(2\left[\phi + \Omega_{\rm b}t\right]\right) \frac{(r/r_{\rm c})^2}{\left((r/r_{\rm c})^2 + 1\right)^2},$$

rc -- радиус ядра WK → rc=2 kpc ← более сильный бар WKr2 → rc=1.4 kpc

Бар Long-Murali (1992)

$$\Phi_r(x, y, z) = \frac{GM_r}{2a} \ln\left(\frac{x - a + T_-}{x + a + T_+}\right)$$
$$T_{\pm} = [(a \pm x)^2 + y^2 + (b + \sqrt{c^2 + z^2})^2)]^{1/2}$$

Эволюция газового диска с баром WK и Ω_b =50 км/с/кпк

T=472 Myr

Размер фрейма – 15х15 кпк

После ~4 оборотов бара спиральные рукава формируют "elliptical/ring-like structure at the OLR"

T=236 Myr, $\Omega_{\rm b}$ =50 км/с/кпк, $\theta_{\rm b}$ =45°

←WK

← WKr2

←LM

Fit статистика

для моделей с баром WK

T=470 Myr

для различных значений θb.

Минимум наблюдается при θb = 45° Спиральные рукава

Спиральные рукава имеют форму трех-компонентного синусоидального возмущения, которое экспоненциально падает с увеличением радиуса

Спиральные рукава – логарифмические, с постоянным углом закрутки

$$\Phi_{\rm sp}(r,\phi,z) = 4\pi G h_z \rho_o \exp\left(-\frac{r-r_o}{R_s}\right) \sum_n^3 \left\{\frac{C_n}{K_n D_n} \times \left[\operatorname{sech}\left(\frac{K_n z}{\beta_n}\right)\right]^{\beta_n} \cos\left(N\left[\phi - t\Omega_{\rm sp} - \frac{\ln(r/r_o)}{\tan(\alpha)}\right]\right)\right\},$$

Cox & Gomez (2002)

$$K_n = nN/r\sin(\alpha)$$

$$D_n = \frac{1 + K_n h_z + 0.3(K_n h_z)^2}{1 + 0.3K_n h_z}$$

Эволюция m=4 спирального узора Ω_s = 20 км/с/кпк, i=15°

T=472 Myr

ILR (R=7 kpc)

Эволюция модели с баром WK и спиральными рукавами m=4, α =12.5°, Ω_s =20 и Ω_b =50 км/с/кпк

		Bar model	
Best-fitting paramater	WK	WKr2	LM
$\Omega_b [km s^{-1} kpc^{-1}]$	50	60	70
$V_{\rm obs}$ [km s ⁻¹]	215	220	235
Robs [kpc]	8.5	8.5	7.0
θ _b [°]	56	51	41
		Arm model	
Best-fitting parameter		CGN2	CGN4
$\Omega_{\rm sp} [\rm kms^{-1}\rm kpc^{-1}]$		20	20
$V_{\rm obs}$ [km s ⁻¹]		210	205
Robs [kpc]		8.0	8.5
α [°]		12.5	10.0
		Mix model	
Best-fitting parameter		CGN2+WK	CGN4+WK
$\Omega_{\rm b} [{\rm kms^{-1}kpc^{-1}}]$		50	60
$V_{\rm obs}$ [km s ⁻¹]		220	215
Robs [kpc]		8.5	8.5
α [°]		15	10

Параметры моделей, обеспечивающих наилучшее согласие с наблюдаемыми L-V диаграммами

Longitude–velocity map of brightness temperature of the CO

(J = 0-1) transition (Dame, Hartmann & Thaddeus 2001)

Наилучшие модели. Распределение газа

Наилучшие модели. Распределение газа

m=4

23

Выводы:

1. Модели только с баром не воспроизводят структуру во внешней области Галактики, модели только со спиральными рукавами не воспроизводят структуру внутренней области Галактики.

2. Наилучшее параметры: скорость бара 50–60 км/с/кпк, скорость спирального узора 20 км/с/кпк, ориентация бара θ_b=45°, закрутка спиральных рукавов i= 10–15°.

3. Модели с m=2 не воспроизводят всех особенностей, модели с m=4 создают очень большое излучение вблизи Солнца

4. Рассмотренные модели не воспроизводят сильную эмиссию центральной молекулярной зоны (СМZ).

The morphology of the Milky Way – II.

Reconstructing CO maps from disk galaxies with live stellar distribution

Alex R. Pettitt, Clare L. Dobbs, David M. Acreman and Matthew R. Bate

Авторы строят N-body модели Галактики. N-body частицы представляют диск и балдж. Спиральный узор имеет нестационарную (transient) природу. Модельные L-V диаграммы лучше согласуются с наблюдаемыми диаграммами (Дейм и др. 2001), чем в случае аналитически заданных потенциалов. Наилучшее согласие дают модели с m=4 (в среднем) и с углом закрутки i=20° (приблизительно). Угловая скорость вращения коротко-живущих (transient) спиральных рукавов падает с увеличением Галактоцентрического расстояния R.

Параметры моделей

звездный					
Calculation	$M_{\rm d}(10^{10}{ m M_{\odot}})$	$M_{\rm h}(10^{10}{\rm M_{\odot}})$	$M_{\rm b}(10^{10}{\rm M_{\odot}})$		
Ba	5.3 Huge	disk 44	1.05		
Bb	4.1 Heavy	y disk 63	1.05		
Bc	3.2 Norm	al disk 83	1.05		
Bd	2.5 Light	disk <u>101</u>	1.05		
Db	4.1	63	−No bulge		
Dc	3.2	83	−No bulge		
Hb	4.1	63 Live ha	alo 1.05		

Вклад диска, балджа и гало в кривую вращения

Параметры моделей

$$\rho_{\rm h}(r) = \frac{\rho_{\rm h,0}}{r/r_{\rm h}(1+r/r_{\rm h})^2}$$

$$\rho_{\rm h,0} = \frac{M_{\rm h}}{4\pi r_{200}^3} \frac{C_{\rm NFW}^3}{\ln(1+C_{\rm NFW}) + C_{\rm NFW}/(1+C_{\rm NFW})}.$$

C_NFW=5 kpc

Балдж
Пламмер сфера:
$$ho_{\rm b}(r) = rac{3M_{\rm b}}{4\pi} rac{r_{\rm b}^2}{\left(r_{\rm b}^2 + r^2
ight)^{5/2}},$$
rb= 0.35 kpc, 0.1 10⁶ star particles

Газовая подсистема: Mg= 8 10⁹ Ms 3 10⁶ SPH particles

Диск:

$$\rho_{\rm d}(r,z) = \frac{M_{\rm d}}{4\pi R_{\rm d}^2 z_{\rm d}} \exp\left(-r/r_{\rm d}\right) \operatorname{sech}^2(z/z_{\rm d}),$$

rd=3.0 kpc, zd=0.3 kpc, 1 10⁶ star particles

← STARS

← GAS

Фрейм – 15 х 15 кпк

Swing amplification (Julian & Toomre 1969; Toomre 1981) Усиление при перевороте

Swing amplification (Julian & Toomre 1969; Toomre 1981) Усиление при перевороте

Число рукавов растет с ростом R и уменьшается с ростом $\Sigma_{_0}$

Предсказанное Тумре (1981) число спиральных рукавов

т в доминирующей моде в N-body модели

в среднем согласуется с числом рукавов в модельных дисках

для доминирующих мод в области R=5—8 кпк

Амплитуда спиральных мод с различным порядком симметрии m в N-body моделях

Амплитуда спиральных мод

Угловая скорость вращения спирального узора Ω_р на разных расстояниях R и угол закрутки рукавов α в модельных дисках

Ω_{p} (R:	=5 kpc)	Ω _p (R=7.5 kpc)	Ω _p (R=10 kpc)	α [°]
Huge	38 km/s/kpc	44	33	19
Heavy	34	25	21	20
Normal	37	27	25	23
Light	39	35	28	22

Ω_р уменьшается с ростом R, что указывает на материальную природу рукавов.

Угол закрутки рукавов α составляет в среднем α =21°

Результаты сравнения различных моделей с L-V диаграммами Дейма и др. 2001

Model	$t_{\rm bf}~({\rm Myr})$	Robs (kpc)	$V_{\rm obs} ({\rm km}{\rm s}^{-1})$	Fit stat.
Ba	197	8.5	215	0.994
Bb	226	8.5	200	0.857
Bc	207	7.0	200	0.833
Bd	207	7.0	205	0.768
Db	235	8.5	200	0.974
Dc	216	8.0	200	0.931
Hb	216	8.0	205	0.925

Longitude–velocity map of brightness temperature of the CO

(J = 0-1) transition (Dame, Hartmann & Thaddeus 2001)

Наилучшие N-body модели

Heavy Disk T=226 Myr Fit=0.99

Normal Disk T=207 Myr Fit=0.96

Наилучшие N-body модели

Normal Disk T=292 Myr Fit=0.97

Light Disk T=207 Myr Fit=0.89

Выводы:

1. N-body диски формируют коротко-живущие материальные (не волны плотности) спиральные рукава.

2. Число спиральных рукавов тувеличивается с уменьшением "disk-to-halo mass" и с ростом R, что согласуется с теорией "swing amplification" (Джулиан Тумре 1969, Тумре 1981).

3. Угол закрутки спиральных рукавов 18 $^{\circ}$ < α < 25 $^{\circ}$

4. Угловая скорость спиральных рукавов Ω_s уменьшается с расстоянием R.

5. Авторы считают, что N-body модели с нормальным диском (M_d=3.2 10¹⁰ Ms), m=4 и α=20° очень хорошо согласуются с наблюдениями.

← STARS

← GAS

Модели демонстрируют m=3 моду в центральной области. Db и Dc формируют бар.