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ABSTRACT

We investigate two-dimensional image decomposition of nearby, morphologically selected early-type
galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of
quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs.
We find that a significant fraction of nearby ETGs show changes in isophotal shape that require
multi-component models. The characteristic sizes of the inner and outer component are ~ 3 and
~ 15 kpe. The inner component lies on the mass-size relation of ETGs at z ~ 0.25 — 0.75, while
the outer component tends to be more elliptical and hints at a stochastic buildup process. We find
real physical differences between the single- and double-component ETGs, with the double-component
galaxies being yvounger and more metal-rich. The fraction of double component ETGs increases with
increasing ¢ and decreases in denser environments. We hypothesize that double-component systems
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Distribution of the sample galaxies (black dots) in the redshift vs. log M, plane (left) and (g — ) vs. M, color-magnitude
diagram (right). In each panel, we show the distribution of SDSS galaxies in the NYU-VAGC (Blanton et al. 2005) at z < 0.1 as gray
contours with logarithmic spacing. Histograms show the distribution of each parameter for the sample only.
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Fia. 12, Flux fraction of inner deV component as a function of
total stellar mass. We show the median and 25 — 75 percentiles in
equally spaced log M, bins from 10 to 12 with the blue solid line
and shaded regions.
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Fia. 15, Fraction of double component ETGs as a function of
projected neighbor density (Baldry et al. 2006). We show the trend
in bins of o. There is a weak trend towards a decreasing double
component fraction with increasing galaxy densities.
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ABSTRACT

For the first time, we present the size evolution of a mass-complete (log(M, /Mg )>10) sample of
star-forming galaxies over redshifts z = 1 — 7, selected from the FourStar Galaxy Evolution Survey
(ZFOURGE). Observed H-band sizes are measured from the Cosmic Assembly Near-Infrared Deep
Extragalactic Legacy Survey (CANDELS) Hubble Space Telescope (HST)/F160W imaging. Distri-
butions of individual galaxy masses and sizes illustrate that a clear mass—size relation exists up to
z~T. At z ~ 7, we find that the average galaxy size from the mass—size relation is more compact at
a fixed mass of log( M, /Mg )= 10.1, with T1/2,maj = 1.02 £ 0.29 kpc, than at lower redshifts. This is
consistent with our results from stacking the same CANDELS HST /F160W imaging, when we correct
for galaxy position angle alignment. We find that the size evolution of star-forming galaxies is well
fit by a power law of the form r, = 7.07(1 4 z)~%89 kpe, which is consistent with previous works for
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Table 1

Best-fit values for A, mass-normalised average sizes, and average

sizes from image stacks.
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Figure 2. Stacks of galaxy images from HST /F160W CANDELS imaging. Each galaxy image is normalised by its F160W flux before
being stacked. The circles in each panel have a diameter of 10 kpe at the stacked redshift. Note the apparent decrease in brightness and
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ABSTRACT

The stellar initial mass function (IMF), which i1s often assumed to be universal across unresolved stellar
populations, has recently been suggested to be “bottom-heavy” for massive ellipticals. In these galaxies, the
prevalence of gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR spectra implies an excess
of low-mass (m < 0.5 Mg) stars over that expected from a canonical IMF observed in low-mass ellipticals.
A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m < 8 M) would lead to a cor-
responding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per
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Table 1
Properties of Low-Mass Elliptical Galaxy Sample
D o o b |0g Lg ‘MH HST ACS Daia f.g;q-_p J""n'.LM)(B NIX.GC .'\r'l)(_hkg
Source Name (Mpc) (kms™') (aremin) (log Lx.e) (10" em™) (BlueFilter) (Red Filter) (ks) (field) (GCs) (Background)
(1 (2) (3 4 (5 (6) (7 (8) (9) (10) (1) (12) (13

NGC4339 ............ 16.0 1000 1.3 1.1 10.37 1.62 FO06W — 33.6 27 o7 1
NGC4387 .......... 17.9 97.0 09 0.6 10.2 2.73 F475W F&50LP 38.7 1 0 1
NGC4458........... 16.4 85.0 09 07 10.0 2.63 F475W FR50LP 34.5 2 0 1
NGC4550........... 15.5 110.0 1.3 0.3 10.2 2.60 F475W FR30LP 25.8 6 1 1
NGC4551........... 16.1 95.0 1.1 0.7 10.2 2.59 F475W FR50LP 26.6 0 1 0
NGC7457% .......... 12.9 78.0 26 14 10.3 5.49 FAT5W FR50LP 37.7 1 0 2

12 2 6

Total Sample.........
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Figure 1. (a) The number of field LMXBs with Lx > 10°% erg s7! per 10" Ly,
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ABSTRACT

We show that the stellar surface-brightness profiles in disc galaxies—observed to be
approximately exponential—can be explained if radial migration efficiently scram-
bles the individual stars’ angular momenta while conserving the circularity of the
orbits and the total mass and angular momentum. In this case the disc’s distribu-
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The total potential energy of the disc can be written as
= 2?7/ dR RE(R)®n(R)
4o f dRAR RR'S(R)S(RYW(R,R);  (4)

here X(R) is the surface density of the disc at radius R,
®,(R) is the gravitational potential due to the dark halo,
and the kernel W(R, R') is the gravitational potential be-
tween two coplanar rings of unit mass at R and R'; two
expressions for this kernel are

2G . (2VRR
nR+R) \R+R)’

2G R-
=— K|l—], 5
?TR) (R} ) ( )
where K is a complete elliptic integral and R. and R- are

respectively the smaller and larger of R and R'. The gravi-
tational potential in the disc plane is

W(R,R) = —

®(R) = ®y(R) + 27 f dR'R'S(RYW (R, R') (6)
and the kinetic energy of the disc is

T::'rdeE(R)RQ%. (7)

The surface density is related to the distribution function
by

S(R) = RFG)SL, ®)

2.4 The maximum-entropy disc

The maximum-entropy state consistent with a fixed number
of stars N and fixed total angular momentum .J is deter-
mined by the variational equation

0 =06 — adN — 5d.J
:—Q:dej SFG) [(1+log F() +a+ 53], (10)

where o and 3 are Lagrange multipliers. The solution to this
equation is F'(j) = exp(—1—« — 7). Substituting back into
equations (2) and (3) it is straightforward to determine «
and 3 and rewrite the distribution function as

F(G) = g exp (= 3/0). (11)

The fraction of stars with angular momentum less than j is

MED) — 1~ exp (— /). (12)

Eauation (11} or (12) encapsulates a remarkable result:
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We can then compute the surface-density profile from
equations (8) and (11),
due

-'f.’c(R) + R—] . (14)

mN Ru.(R)
dR

Y(R) = mexp [—T}

An alternative form is

M R dlog v,
¥(R)y=—————%¢€ — |1 15
) = T [ R.(R) | ( ¥ :110;;3) » (15)
with R.(R) = (j)/vc(R) and M = Nm the total mass of the
disc.
For a flat rotation curve, v.(R) =constant, R. is inde-
pendent of radius and we have

M R. R
Y(R) = nEE R exp (_R_c) (16)

The surface density is an approximately exponential func-
tion of radius for B > R,, and is < R™! for R < R,. Alter-
natively we may ask for what rotation curve the maximums-
entropy angular-momentum distribution (11) has a Freeman
surface-density distribution, X, (R) o< exp(—FR/Rexp). It is
straightforward to show that in this case

wal B s |1 % log(l+ R/Resp)|,  (17)

where voc = (j)/ Rexp is the circular speed at large radii.

Figure 1. The distribution of specific angular momentum stacked
for 304 disc galaxies from Courteaun {1996, 1997). Every distribu-
tion has been rescaled using two fit parameters (normalization
and (). The contours enclose 30, 50, 70 and 90% of the plotted
data points. The red line is the maximum-entropy distribution
(eq. 11). Despite some small but systematic deviations for small
j there is pood agreement with the model prediction.



