Обзор ArXiv: astro-ph, January 11-16, 2017

От Сильченко О.К.

Astro-ph: 1701.02750

The effect of ram pressure on the molecular gas of galaxies: three case studies in the Virgo cluster

Bumhyun Lee^{1*}, Aeree Chung^{1,2,3}†, Stephanie Tonnesen⁴, Jeffrey D. P. Kenney⁵, O. Ivy Wong⁶, B. Vollmer⁷, Glen R. Petitpas⁸, Hugh H. Crowl⁹, Jacqueline van Gorkom¹⁰

¹Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

²Yonsei University Observatory, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

³ Joint ALMA Observatory, Alonso de Córdova 3107 Vitacura, Santiago, Chile

⁴Carnegie Observatories, 813 Santa Barbara St, Pasadena, CA, 91101

⁵Yale University Astronomy Department, PO Box 208101, New Haven, CT 06520-8101, USA

⁶International Centre for Radio Astronomy Research, The University of Western Australia M468, 35 Stirling Highway, Crawley, WA 6009, Australia

⁷CDS, Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l'Université, F-67000 Strasbourg, France

⁸Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

⁹Division of Science and Mathematics, Bennington College, 1 College Drive, Bennington, VT 05201, USA

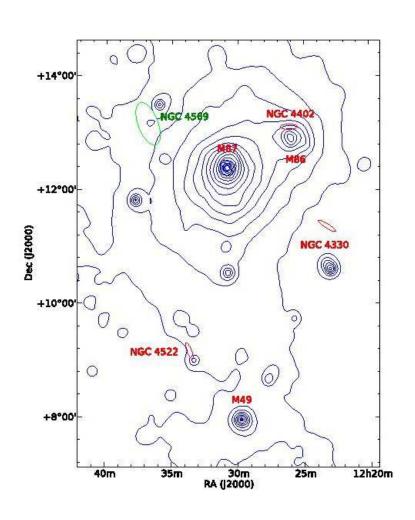
¹⁰Department of Astronomy, Columbia University, Mail Code 5246, 550 W 120th St, New York, NY 10027, USA

Свойства 3х галактик

Table 1. General Information of Sample Galaxiesa.

Galaxy	NGC 4330	NGC 4402	NGC 4522 12 ^h 33 ^m 39 ^s .7		
Right ascension (J2000)	12 ^h 23 ^m 17 ^s .0	12 ^h 26 ^m 07 ^s .6			
Declination (J2000)	+11°22′03".5	+13°06′47".4	$+09^{\circ}10'30''.2$		
Morphological type	Sc	Sb	SBc		
Inclination (°)	79	82	79		
Position angle (°)	60	89	35		
$V_{\rm rad}({\rm km~s^{-1}})^{\rm b}$	1565	232	2328		
$D_{25}(arcmin)$	2.29	3.55	3.47		
Total apparent B-band magnitude	12.02	12.05	11.86		
Total K-band luminosity (109 L _{☉,K}) ^c	6.58	21.30	5.64		
$M_{\rm HI} (10^8 {\rm M}_{\odot})^{\rm d}$	4.45	3.70	3.40		
de f _{HI} ^{d,e}	0.80	0.74	0.86		
$d_{M87}(^{\circ})^{d}$	2.1	1.4	3.3		

^aGeneral information of the sample galaxies from Paturel et al. (2003) (HyperLeda, http://leda.univ-lyon1.fr/).


 $^{^{}b}$ cf. the Virgo mean \sim 1100 km s⁻¹ (Mei et al. 2007).

^cSkrutskie et al. (2006), cf. Milky way: $8.24 \times 10^{10} \ L_{\odot,K}$ (Drimmel & Spergel 2001), M31: $1.29 \times 10^{11} \ L_{\odot,K}$ (Barmby et al. 2006).

dthe VIVA study (Chung et al. 2009).

 $[^]edef_{HI} = \langle \log \overline{\Sigma}_{HI,all} \rangle - \log \overline{\Sigma}_{HI,obs}$, where $\langle \log \overline{\Sigma}_{HI,all} \rangle$ is the mean HI surface density of field galaxies (Haynes & Giovanelli 1984), and $\log \overline{\Sigma}_{HI,obs}$ is the mean HI surface density of an observed galaxy (Chung et al. 2009). In this work, morphology independent deficiency has been adopted as Chung et al. (2009).

Расположение в Virgo

Наблюдения

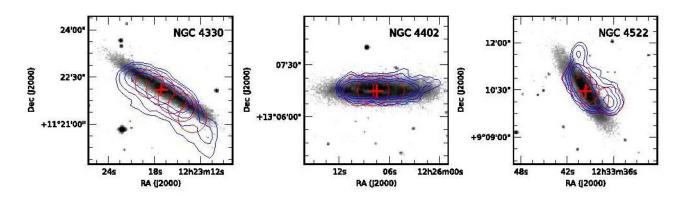


Figure 2. The HI distribution of NGC 4330, NGC 4402 and NGC 4522 (from left to right) is shown in blue contours overlaid on the Digitized Sky Survey 2 (DSS2, https://archive.stsci.edu/dss/index.html) red image. The red cross indicates the stellar disc centre of each galaxy estimated from *Spitzer* 3.6 μ m data (Salo et al. 2015), and the thin red circles represent the SMA observation points, each of which corresponds to the size of the primary beam at 230 GHz (\approx 54 arcsec).

Субмиллиметровый интерферометр SMA на Гавайях (высота 4 км): 7 антенн по 6 метров каждая.

Наложение молекулярного газа на оптическое изображение

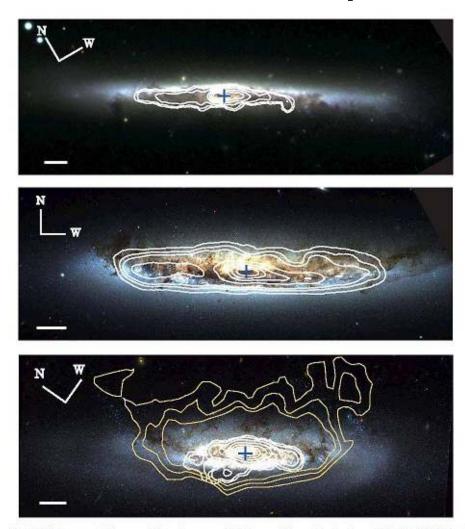
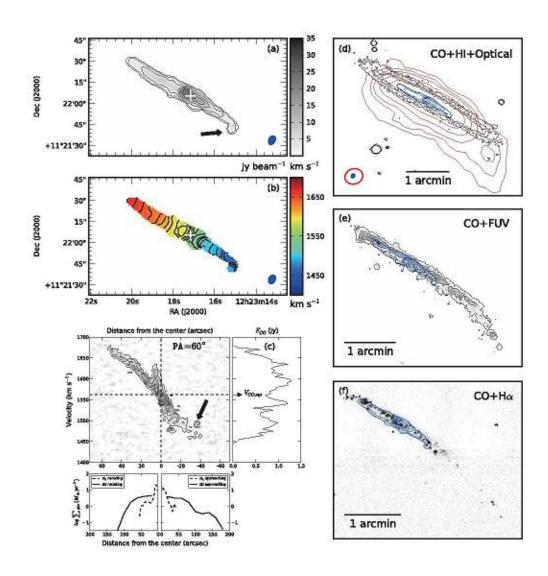
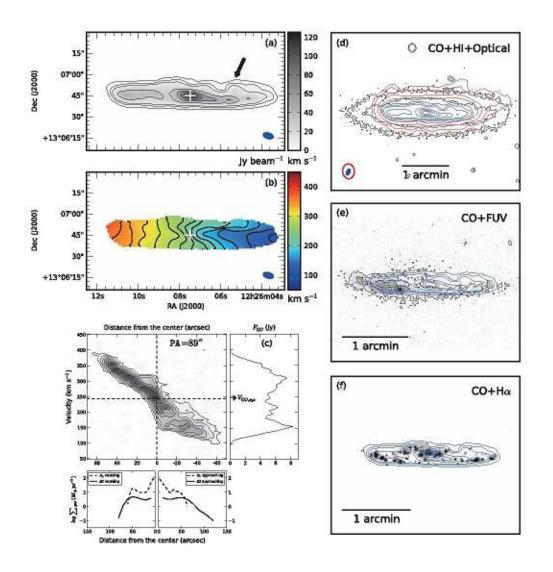
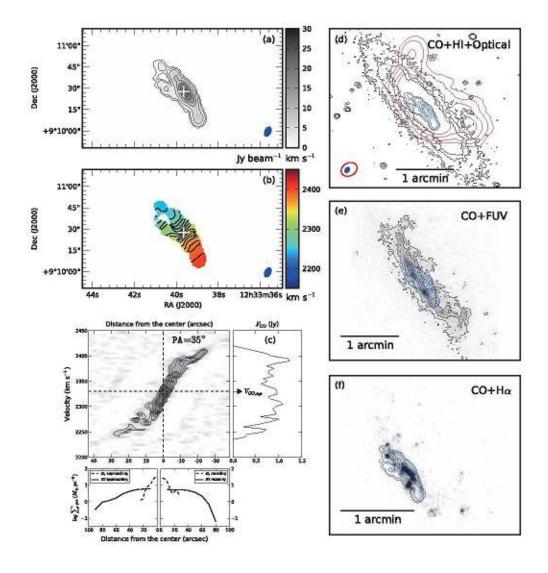
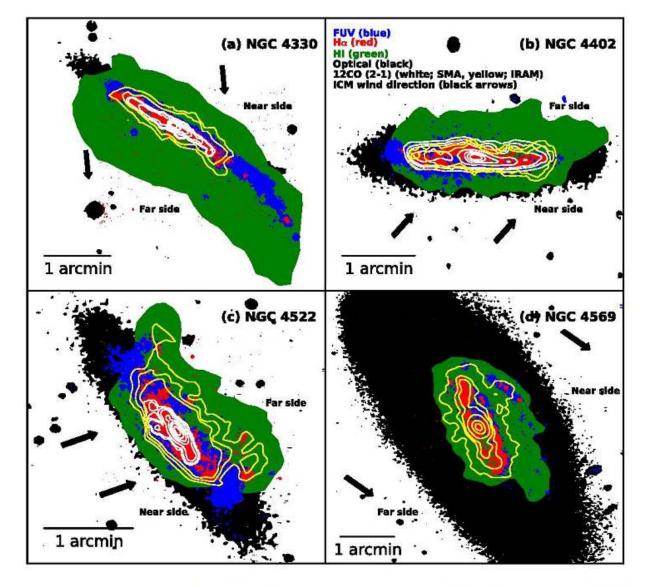




Figure A1. 12CO (2-1) contours (white conours; SMA, yellow contours; IRAM) are overlaid on optical colour images (NGC 4330; WIYN 3.5m telescope BVR colour image; Ahramson et al. 2011, NGC 4402 and NGC 4522; HST⁵ BVI colour images). Top: NGC 4330, Middle: NGC 4402. Bottom: NGC 4522. The physical scale bar (20 arcsec) of each galaxy is shown at the bottom left. The blue cross indicates the stellar disc centre of each galaxy.


NGC 4330


NGC 4402

NGC 4522

Bce – и NGC 4569 для сравнения

Astro-ph: 1701.03466

The imprints of bars on the vertical stellar population gradients of galactic bulges

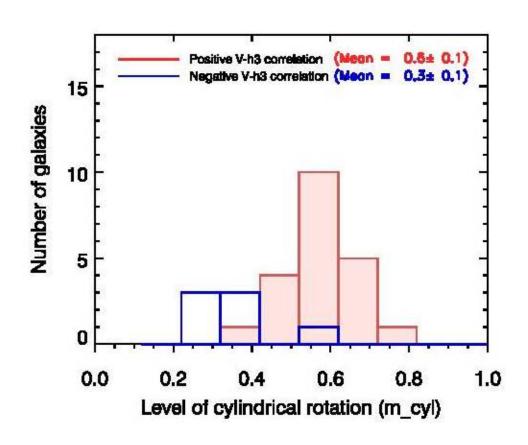
A. Molaeinezhad¹*, J. Falcón-Barroso², I. Martínez-Valpuesta², H.G. Khosroshahi¹, A. Vazdekis², F. La Barbera⁶, R.F. Peletier⁵, M. Balcells²,

¹School of Astronomy, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746 Tehran, Iran

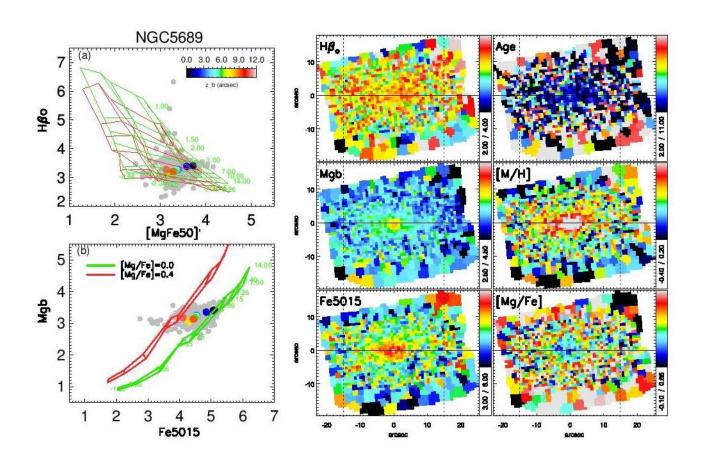
²Instituto de Astrofísica de Canarias, E-38200, La Laguna, Spain

³Depto. Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain

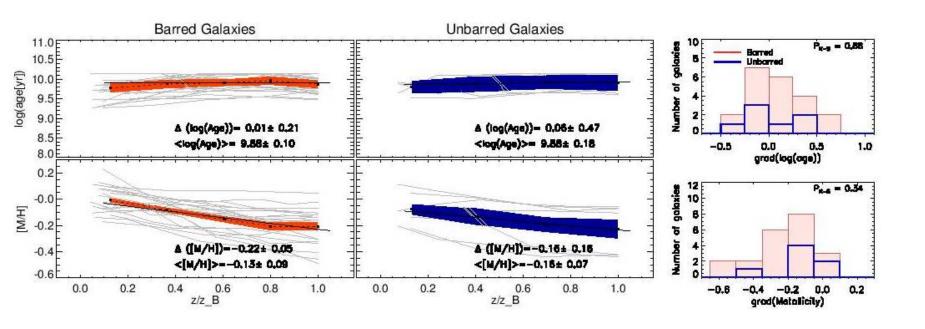
⁴Isaac Newton Group of Telescopes, Apartado 321, 38700 Santa Cruz de La Palma, Canary Islands, Spain

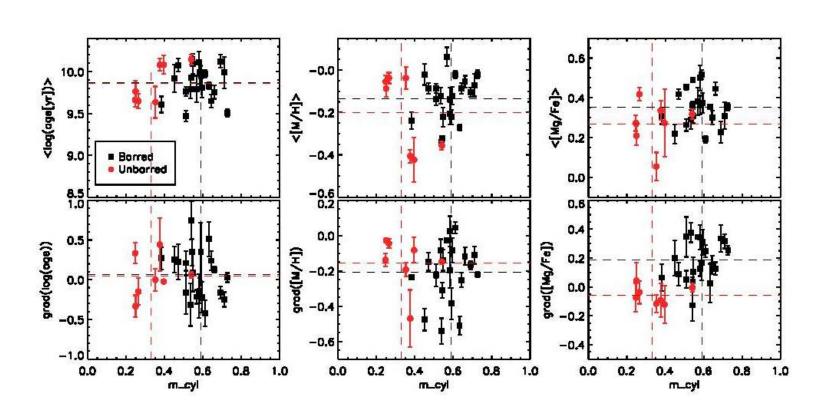

⁵Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, the Netherlands

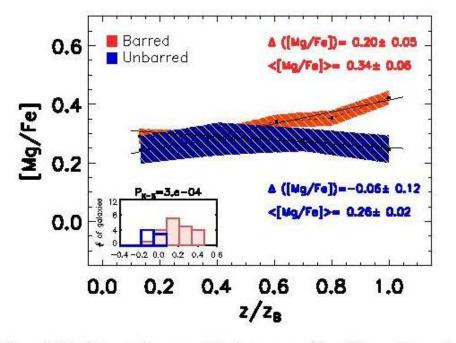
⁶INAF Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy


Объекты: 21 с баром и 7 без баров

Galaxy (1)	Sample (2)	PA (deg) (3)	$V_{\rm hel} \ ({\rm kms^{-1}}) \ (4)$	M_K (mag) (5)	T-type (6)	incl. (deg) (7)	σ_0 (km s^{-1}) (8)	Dust (9)	m_{cyl} (10)	Bar (11)	$z_{ m disc}$ (arcsec) (12)	$x_{\rm B}$ (arcsec) (13)	$z_{\rm B}$ (arcsec) (14)
NGC3098	S2	88.5	1397	-22,72	-1.5	90	126.2	N	0.54±0.20	N?	1.5	10	9
NGC4026	S2	177.5	985	-23.03	-1.8	84	158.1	N	0.54 ± 0.13	Y	3.0	12	10
NGC4036	S2	261.2	1385	-24.40	-2.6	75	181.9	F	0.26 ± 0.24	N	2.0	12	9
NGC4179	S2	142.8	13	-23.18	-1.9	86	167.5	N	0.59 ± 0.12	Y	2.0	13	10
NGC4251	S2	99.0	1066	-23.68	-1.9	80	128.8	N	0.73 ± 0.08	Y	2.0	12	9
NGC4270	S2	109.8	2331	-23.69	-2.0	80	139.6	N	0.58 ± 0.12	Y	1.5	13	10
NGC4346	S2	98.8	832	-22.55	-2.0	77	127.0	N	0.63 ± 0.11	Y	3.5	12	12
NGC4425	S2	25.8	1908	-22.09	-0.6	90	82.8	N	0.53 ± 0.15	Y	3.0	14	8
NGC4435	S2	10.0	791	-23.83	-2.1	68	152.8	D	0.51 ± 0.14	Y?	3.0	11	9
NGC4461	S2	8.1	1924	-23.08	-0.8	71	133.0	N	0.58 ± 0.15	Y	3.5	13	9
NGC4474	S2	79.4	1611	-22.28	-2.0	89	87.9	N	0.55 ± 0.17	Y?	2.0	10	9
NGC4521	S2	166.3	2511	-23.92	-0.1	90	185.8	N	0.71 ± 0.08	Y	2.0	10	8
NGC4710	S2	27.4	1102	-23.53	-0.9	88	104.7	D	0.54 ± 0.20	Y	3.0	19	13
NGC4762	S2	29.6	986	-24.48	-1.8	90	133.7	N	0.66 ± 0.13	Y	1.0	10	7
NGC5103	S2	140.6	1273	-22.36	-	90	111.2	N	0.37 ± 0.21	N	2.0	9	8
NGC5326	S1	130.0	2520	-23.77	_	65	144.9	N	0.35 ± 0.20	N	2.5	10	8
NGC5353	S2	140.4	2198	-25.11	-2.1	80	281.2	D	0.57 ± 0.11	Y	3.0	15	9
NGC5422	S1	152.3	1838	-23.69	-1.5	90	161.8	N	0.69 ± 0.08	Y	2.5	16	10
NGC5475	S1	166.2	1671	-22.88	-	79	115.0	N	0.25 ± 0.25	N	2.5	12	8
NGC5574	S2	62.7	1589	-22.30	-2.8	89	81.9	N	0.51 ± 0.23	Y	2.0	11	9
NGC5611	S2	64.6	1968	-22.20	-1.9	74	137.4	N	0.40 ± 0.24	N	1.5	10	9
NGC5689	S1	84.0	2160	-24.00	-	81	157.4	D	0.64 ± 0.09	Y	3.0	17	13
NGC5707	S1	35.0	2212	-23.22	_	80	131.8	N	0.25 ± 0.20	N	1.5	11	8
NGC5746	S1	170.0	1727	-24.99	-0.0	81	202.8	D	0.61 ± 0.09	Y	3.5	22	15
NGC5838	S1	40.1	1341	-24.13	-2.6	72	246.0	N	0.47 ± 0.17	Y	2.0	11	9
NGC5854	S2	54.8	1663	-23.30	-1.1	74	104.7	N	0.38 ± 0.26	Y	3.5	13	10
NGC5864	S2	65.6	1874	-23.62	-1.7	74	110.7	N	0.59 ± 0.12	Y	1.5	13	10
NGC6010	S1	102.9	2022	-23.53	_	90	159.2	D	0.45 ± 0.19	Y	3.5	11	10


Кинематическая диагностика присутствия бара


Пример индивидуального рассмотрения

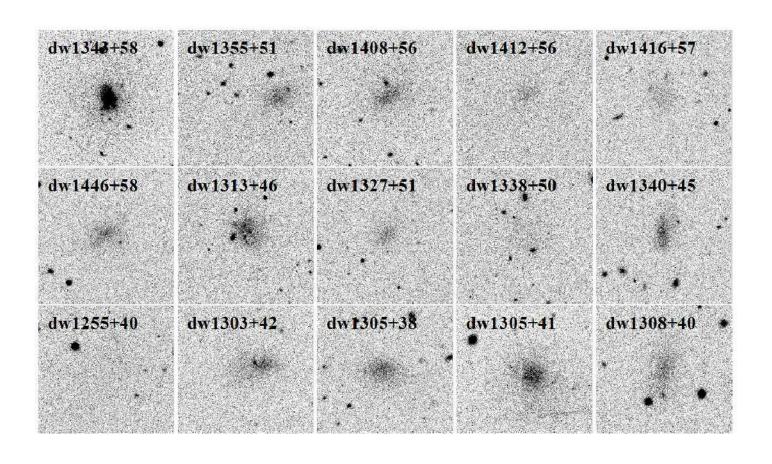

От бара не зависит ничего...

... ничего, кроме отношения магния к железу!

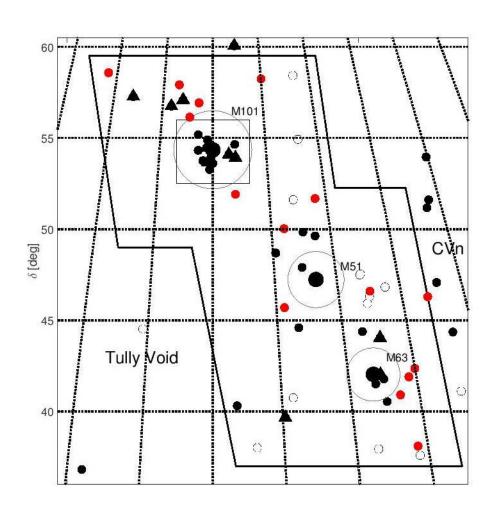
В барных галактиках отношение магния к железу в звездах растет по малой оси балджа!

Figure 7. The integrated, error weighted average profiles of the variations of the [Mg/Fe], with increasing height (z) from the disc plane for both barred and unbarred galaxies in our sample. The inset histogram shows the distribution of the vertical gradients in [Mg/Fe] for both classes of bulges in our sample. Gradients have been measured in the range $z_{disc} < z < z_B$, normalized by the vertical extent of the bulge (z_B) in arcsec. P_{KS} gives the probability that the two distributions are drawn from the same populations, as derived from a K-S test.

Astro-ph: 1701.03681


The M101 group complex: new dwarf galaxy candidates and spatial structure

Oliver Müller¹, Roberto Scalera¹, Bruno Binggeli¹, and Helmut Jerjen²


Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia e-mail: helmut.jerjen@anu.edu.au

Departement Physik, Universität Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland e-mail: oliver89.mueller@unibas.ch; roberto.scalera@stud.unibas.ch; bruno.binggeli@unibas.ch

15 новых карликов в группе M101 – разглядыванием картинок SDSS

Вот как они расположены на небе – красные точки

Плоскость спутников, лежит на нашем луче зрения!

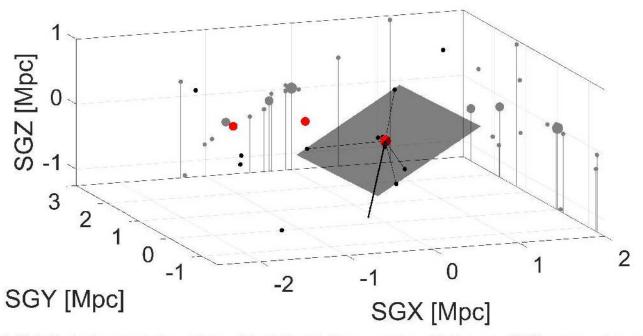
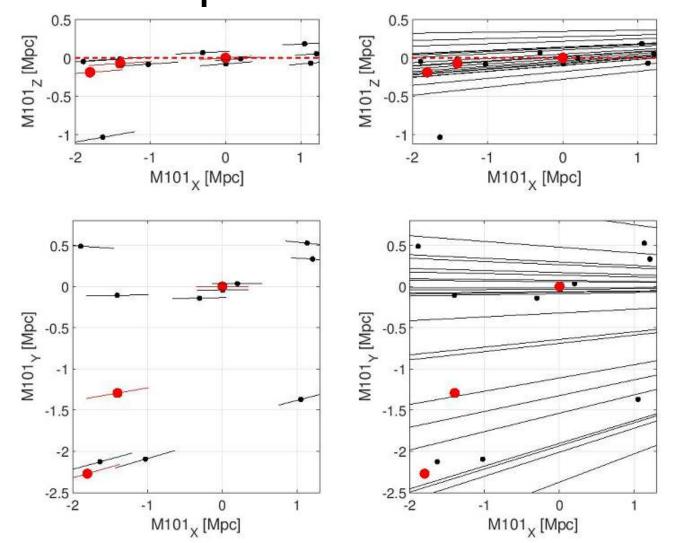



Fig. 7. 3D distribution, in supergalactic coordinates, of all galaxies with distance measurements in the surveyed M 101 group complex, centered at M 101. The red dots correspond to the major galaxies M 101, M 51 and M 63, the black dots to dwarf galaxies. The grey dots (shadows) appearing

Проекции: при взгляде сверху на плоскость спутников видны филаменты!

