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ABSTRACT

ALMA observations of the long wavelength dust continuum are used to estimate the interstellar
medium (ISM) masses in a sample of 708 galaxies at z = 0.3 to 4.5 in the COSMOS field. The galaxy
sample has known far-infrared luminosities and, hence, star formation rates (SFRs), and stellar masses
(M.,) from the optical-infrared spectrum fitting. The galaxies sample SFRs from the main sequence
(MS) to 50 times above the MS. The derived ISM masses are used to determine the dependence of
gas mass on redshift, M, , and specific SFR (sSFR) relative to the MS. The ISM masses increase
approximately 0.63 power of the rate of increase in SFRs with redshift and the 0.32 power of the
sSFR/sSFRrS. The SF efficiencies also increase as the 0.36 power of the SFR redshift evolutionary
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The distributions of s8SFR and redshifts for the objects
which were detected are shown.
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Figure 4. The distributions of stellar masses and SFRs for the
detected objects.
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Figure 6. The SFRs and derived Mygyy are shown for 708 galaxies
detected in the ALMA observations. Uncertainties in both quan-
tities range from 10% to 50%; we show a typical error bar of 25%
in the lower right corner. The observed spread in both x and y
is much larger than this uncertainty, indicating that there must
be other dependencies than a simple one-to-one correspondence
between SFRs and [SM masses.
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Moaenb 3BOMOLUNKN Ha MaBHOW
nocriegoBaTENbHOCTU U
HabrnogaTenbHbIM pe3ynbTar

evolution (z)

MS Evolution Tracks

z 3.0 2.0 1.0 S 100 MSI(Lee etol 201 5)I
1000F 0.5 0.4 < e
M/10% = 1.0 50 10.0 I
N
-~ [a]
b T =
100 . e

= 5 10}
73] 5 E
c
" 02
\‘ r =
. § SF efficiency (z)
o
1 R | 4 T R | & 1

0.5 1.0 1.5 2.0 25 3.0 3.5

1010 10" .

Figure 2. The evolution of the star forming galaxy MS evolves to
lower SFRs at lower z for all stellar masses. The curved downward ISM on the MS at a characteristic stellar mass of 5 x 10" Mg,.
tracks (dashed lines) show the evolution of characteristic stellar
masses (1, 5, and 10 x10'"%Mg )between the MS lines at the adja-
cent redshifts — assuming that each galaxy stays on the MS (z) and
its increase in stellar mass is given by integration of the SFRjrs

Figure 9. The evolutionary dependence of the SFRs (blue), the
[SM masses (green) and the SF efficiency (red) per unit mass of
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The result of the MCMC fitting for the dependence of
the Mgy on redshift, MS-Ratio and stellar mass is:
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The MCMC solution is:
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Figure 10. Left - The gas depletion times (Mygy/SFR) obtained from combining Equations 6 and 7. Right - The gas mass fraction
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obtained from Equation 6. Both are shown for a fiducial mass M, = 5 x 101 M, and with sSFR = 1 (blue}, 4 (green) and 10 (red) times
that of the MS. The extrapolation of the [SM mass fraction to z = 0 is probably higher by a factor ~2, compared to published values.
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Figure 11. The net accretion rates (contours) calculated using Equation 11 with the ISM masses given by Equation 6, the SFRs from
Sguation 7 and the MS tracking from the assumption of continnity in the evolution of the MS galaxy population. In the Left panel, the
olor background is SFRjrs: in the Right panel it is Mgy on the MS in units of 10"Mg. We adopt a 30% stellar mass-loss percentage

Leitner & Kravtsov 2011).
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Cambin ganekun KkBasap, ¢ YHepHOW
ObIPpOV B MUMNMMapAa, CONMHEYHbIX Macc

In this paper we investigate the host galaxy of
the most distant quasar currently known, ULAS
J112001.48+064124.3 (hereatter, J1120+40641) at a red-
shift of z = 7.085 (Mortlock et al. 2011). The quasar
is powered by a black hole with a mass of (2.4 +0.2) x
10? M5 (Mortlock et al. 2011; De Rosa et al. 2014) and
18 accreting close to the Eddington Limit ( Mortlock et al.
2011; De Rosa et al. 2014; Barnett et al. 2015). The
quasar host galaxy has previously been detected with
the Interferometer IRAM PdBI in [C 1I] and the dust
continuum (Venemans et al. 2012). In these data the
host galaxy was unresolved in a ~2" beam and the dy-
namical mass and the morphology of the line emitting
gas could not be constrained. Here we present high
spatial resolution (0//23, or 1.2kpe) observations with
ALMA (Section 2.1), decreasing the beam area by a
factor of ~70. We also present observations with the
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igure 3. Lefl: Map of tlle [C 1] emission in J11204-0641 (shown both in greyscale as well as contours), averaged over
Hx FWHM iy (600kms™ or 470 MHz). The 1o rms noise in this map is 42 pJy. The blue, dashed contours are 30 and
2c; the black, solid contours are +20 and +3c; the white solid contours are [r 7.9,11 1.%] xe. The size of the beam is shown
1 the bo’rtnm—left corner. The white cross shows where the continnum emission of the quasar host peaks. Right: The red
nd blue side of the emission line are shown in contours, averaged over 265 kms™" centered at +265kms™" (red contours) and
265 km s~ (blue contours) from the line peak. Contour levels are 20, 420, +30, +50, +7o, and +9¢, with o ~57 uJy. The
reyscale is a representation of the continuum map. The white, red, and blue crosses indicate the peak of the total, redshifted,
ad blueshifted [C 11] emission, respectively.
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BblIBO/:

[[anakTuka He BpallaeTcs;

[1lo gmucnepcum cKopocTen rasa
ONHaMn4eckasa Macca LeHTpanbHOU
obnactn (R< 1 kpc) 10 mnpg M(sun),

To ecTb Mmacca YepHoW AObIpbl TOMNMbKO B 5
pa3 MeHbLLUE!

[[a3 BO30OyxaeH HE kBasapowm, a
3Be3noobpasoBaHmnem; ero temn 100-300
macc CornHua B rof.
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BOT nnunkn ranaktuk no JaHHbIM
HST
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A BOT pe3ynbTaTbl MHPPaKpacHOU
cnekTpockonmn Ha Gemini:
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Figure 7. Stellar mass versus star formation rate for the
sample (colored points) and the mass-complete UltraVISTA
catalog in the range of 1.7 < 2z < 2.7. The average star-
forming main sequence from Whitaker et al. (2014) for the
redshift range in question is shown by the green dashed line.



