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ABSTRACT

We study the dark matter (DM) assembly in the central regions of massive early-type
galaxies up to z ~ 0.65. We use a sample of ~ 3800 massive (log M, /M5 > 11.2) galax-
ies with photometry and structural parameters from 156 sq. deg. of the Kilo Degree
Survey, and spectroscopic redshifts and velocity dispersions from SDSS. We obtain
central total-to-stellar mass ratios, Myyn/M,, and DM fractions, by determining dy-
namical masses, Mgyy,, from Jeans modelling of SDSS aperture velocity dispersions
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SDSS area, starts to be incomplete at redshift z >0.6 and
masses log M, /Mg =11.3. The fiber diameter is of 2 arc-
sec. Velocity dispersions are determined in Thomas et al.
(2013), using Penalized PiXel Fitting (pPXF, Cappellari &
Emsellem 2004) and GANDALF (Sarzi et al. 2006) on the
BOSS5 spectra. These values are quite robust being, on av-
erage, quite similar to the measurements from independent
literature (see Thomas et al. 2013 for further details).

The final sample consists of 4118 MPA-JHU-DRT7 galax-
ies and 5603 BOSS-DR10 galaxies, for a total of 9721 sys-
tems with structural parameters, spectroscopic redshifts and
velocity dispersions. We limit to a mass-completed sample
of galaxies with log M, /M, > 11.2, consisting of a total of
3778 galaxies with redshift 0 < z < 0.7.
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ABSTRACT

A major question in galaxy formation is how the gas supply that fuels activity in galaxies is modu-
lated by their environment. We use spectroscopy of a set of well characterized clusters and groups at
0.4 < z < 0.8 from the ESO Distant Cluster Survey (EDisCS) and compare it to identically selected
field galaxies. Our spectroscopy allows us to isolate galaxies that are dominated by old stellar popu-
lations. Here we study a stellar-mass limited sample (log( M, /M) > 10.4) of these old galaxies with
weak [O 1I] emission. We use line ratios and compare to studies of local early type galaxies to conclude

that this gas is likely excited by post-AGB stars and hence represents a diffuse gas component in the

galaxies. For cluster and group galaxies the fraction with EW([O 11]) > 5A is florn = 0.0870 03 and

f[() = D.Dﬁi‘?}:gz respectively. For field galaxies we find f[o = D.QTTQ'%E, representing a 2.80 dif-

ference between the [O 1I] fractions for old galaxies between the different environments. We conclude
that a population of old galaxies in all environments has ionized gas that likely stems from stellar mass
loss. In the field galaxies also experience gas accretion from the cosmic web and in groups and clusters
these galaxies have had their gas accretion shut off by their environment. Additionally, galaxies with
emission preferentially avoid the virialized region of the cluster in position-velocity space. We discuss
the implications of our results, among which is that gas accretion shutoff is likely effective at group
halo masses (log M/Mg> 12.8) and that there are likely multiple gas removal processes happening
in dense environments.
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Table 1

Cluster and Group Data

system z ot Naa mph
[kem /5]
Clusters
cl1018.8-1211  0.4734 486723 17
cl1040.7-1155  0.7043 418752 10
cl1054.4-1146  0.6972 589715 26
cl1054.7-1245  0.7498  504F.3% 21
cl1059.2-1253  0.4564 510722 26
cl1138.2-1133 04796 73272 9
cl1138.2-1133a  0.4548 542793 5
cl1202.7-1224 04240  518%95. 9
cl1216.8-1201  0.7943 1018772 42
cl1227.9-1138  0.6357 574712 13
cl1232.5-1250  0.5414  10807.7 9
cl1301.7-1139 04828 68775, 18
cl1353.0-1137  0.5882 666755 13
cl1354.2-1230  0.7620 64870 11
cl1354.2-1230a  0.5952 433732, 6
cl1411.1-1148 05195 7107133 13

Table 1

Cluster and Group Data

system z o® "ﬂ""r-*”"""'?‘h

[km /5]

Groups

cl1037.9-1243 0.5783 319723
cl1040.7-1155a  0.6316 179730
cl1040.7-1155b  0.7798 25977
cll054.4-1146a  0.6130 227777
cl1054.7-1245a  0.7305 mzﬂ’.ﬁ 9
cl1227.9-1138a  0.5826 34175 1

cl1301.7-1139a  0.3969 391793 10
¢l1420.3-1236 04962 218723 18

e R |

* This was computed using the full EDisCS mem-
ber sample, which is larger than the sample used
for the analysis in this paper.

b The number of galaxies meeting our stellar mass
and anality cuts.
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The EDisCS spectroscopic magnitude limit 18 [ = 22
for 0.4 < z < 0.6 clusters and I = 23 for 0.6 < z < 0.8
clusters. The fainter selection at high redshift offsets
the increasing luminosity distance and the same mass
limit log( M,/ Mg) > 10.4, applies for all of our systems.
In all of what follows we only consider galaxies above
this limit. This results in a total of 163, 55, and 251
field, group and cluster galaxies respectively. In the last
column of Table 1 we indicate the number of galaxies in
this final sample that come from each cluster and group.
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Table 3

Fractions of emission-line galaxies as a function of stellar age and environment

Relative *"1!'—';{-3E1 f-::- Jield i .ft'::g‘i“t'»"-'l Ph .fﬁ' Jjeluster b ft Jarouptoluster b -'n""rfi-:':nr-:f -'I\"'rg'T‘f'J‘i‘J ] Jﬁ'"'rt.‘F-'uS ter
younger gptaes  pasatles gigathds  gegihs 50 10 35
intermediate  0.6070097  0.58F0 1L 056700 0567000 58 12 66
older grteal. DSt dasTes gt s 55 33 150
Note. — All errors on the fractions are computed using binomial errors. Galaxies are limited in stellar

mass to log(Ms /Meaz) > 10.4.. The numbers in the rightmost columns correspond to the total number
of galaxies in each age-environment combination that pass all of our selection criteria.

* The relative ages corresponding to the age divisions in Dy (4000)-{Hd,psHvy,ps) plane as shown in

Figure 1 and 2.
b The fraction of galaxies in each relative age bin and in each environment that have EW([O 11])> 5A.
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Figure 6. The fraction of galaxies with EW([O 1])> 5A as a
function of relative stellar population age as defined in Fig. 1 and
Fig. 2. The points have been shifted in the x-direction slightly
with respect to one another so that they do not overlap. This plot
demonstrates one of the key results of the paper, namely that old
galaxies in the field have a higher fraction of [0 1I] emission than
old galaxies in clusters and groups.
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Figure 8 The cumulative distributions of EW([O 11]) for galax-
ies with EW([O 11])> 5A that are classified as “older” based on
Dy, (4000) and the (Hd,ps Hyaps) strength. The cluster+group dis-
tribution is shifted towards lower EW([O I1]) values, with only a
3% K-S probability of being drawn from the same distribution as
the field galaxies.
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Figure 12. An AGN diagnostic diagram for all of the galaxies
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been observed. All emission and absorption features have been
decomposed as described in the text. Arrows are 1o lower limits
on the ratio, plotted at the lo upper limit of EW({H 5. ). Line
ratios above the horizontal line cannot be powered by normal star
formation (Sanchez-Blazquez et al. 2009).
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Figure 14. The distribution of morphological types for the

“older” galaxies. The T-Type is given on the bottom axis and
the Hubble Type on the top axis, The empty histogram is for all
of these galaxies and the flled histogram is for the subset with
EW([O 11])> 5A. The vertical scale is different in each panel.
All but three of the “older” [O 1I] emitters have E/S0 morphol-
ogy, indeed the early-type fraction of this subsample of galaxies is
consistent at 1-o across all environments. This indicates that the
environmental difference in the EW([O 11]) distribution of “older”
palaxies cannot be driven by the morphology-density relation.
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A FUNDAMENTAL TEST FOR GALAXY FORMATION MODELS: MATCHING THE LYMAN-«
ABSORPTION PROFILES OF GALACTIC HALOS OVER THREE DECADES IN DISTANCE
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ABSTRACT

Galaxy formation depends critically on the physical state of gas in the circumgalactic medium (CGM)
and its interface with the intergalactic medium (IGM), determined by the complex interplay between
inflows from the IGM and outflows from supernovae and/or AGN feedback. The average Lyman-cv
absorption profile around galactic halos represents a powerful tool to probe their gaseous environ-
ments. We compare predictions from Illustris and Nyx hydrodynamical simulations with the observed
absorption around foreground quasars, damped Lyman-a systems, and Lyman-break galaxies. We
show how large-scale BOSS and small-scale quasar pair measurements can be combined to precisely
constrain the absorption profile over three decades in transverse distance 20kpe < b < 20 Mpe. Far
from galaxies = 2 Mpe, the simulations converge to the same profile and provide a reasonable match to
the observations. This asymptotic agreement arises because the ACDM model successfully describes
the ambient IGM, and represents a critical advantage of studying the mean absorption profile. How-
ever, significant differences between the simulations, and between simulations and observations are
present on scales 20 kpe < b < 2Mpe, illustrating the challenges of accurately modeling and resolving
galaxy formation physics. It is noteworthy that these differences are observed as far out as ~ 2 Mpc,
indicating that the ‘sphere-of-influence’ of galaxies could extend to approximately ~ 20 times the
halo virial radius (~ 100kpc). Current observations are very precise on these scales and can thus
strongly discriminate between different galaxy formation models. We demonstrate that the Lyman-c
absorption profile is primarily sensitive to the underlying temperature-density relationship of diffuse
gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models.
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ABSTRACT

We present our catalog of extended low-surface-brightness galaxies (LSBGs) identified in the Wide layer of
the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ~200 deg? of the survey, we
have uncovered a rich diversity of LSB phenomena, including red (g — ¢ = 0.64) and blue (g — 7 < 0.64)
LSBGs with a wide range of morphologies, tidal debris from galaxy interactions, and cirrus emission {rom
Galactic dust. We publish a catalog of 781 LSBGs, which, because we focus on angularly extended galaxies
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Figure 3. Color-color diagram for our full catalog of LSBGs. We
separate the galaxies into red (¢ — ¢ > 0.64) and blue (g — ¢ < 0.64)
subsamples, with the dividing color at the median value, We show the
evolutionary path of a 0.4 xsolar metallicity simple stellar population
from the models of Bruzual & Charlot (2003). The subsolar and solar
metallicity models fall on very similar evolutionary paths in this color
space. Note the apparent bimodality in both the g — - and g — i color
distributions shown on the top and right side of the figure.
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Figure 5. Sky positions of LSBGs within the HSC-SSP fields that have been observed to the full Wide layer depth (in gri) as of the internal
S16A data release (see Aihara et al. 2017a for information about the HSC-SS5P data releases). Red LSBGs (g — ¢ > (0.64) are colored red, and
blue LSBGs (g — ¢ < 0.64) are colored blue. We also show the positions of galaxies with z < 0.055 (black points) from the NASA-Sloan Atlas
(NSA) galaxy catalog.
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which we have distance information. Stars show LSBGs with archival
spectroscopic redshifts, and large triangles show LSBGs that are
projected in close proximity to the NGC 5846 group (see Figure 10),
which is at a distance of 26,1 Mpc (we assume this distance for these
LSBGs). We also show the family of early-type galaxies (Brodie
et al. 2011), giant LSB spiral galaxies (Sprayberry et al. 1993),
UDGs from van Dokkum et al. 2015 (vD+15) and Romdn & Trujillo
2017a (RT167a), and H1-bearing UDGs (Leisman et al. 2017). The
color bar shows the g-band central surface brichtness for 1. SB(G<



