A-ph 1709.09180

The Circumgalactic Medium

Jason Tumlinson¹, Molly S. Peeples¹, & Jessica K. Werk²

¹Space Telescope Science Institute and Johns Hopkins University, Baltimore, Maryland; email: tumlinson@stsci.edu, molly@stsci.edu

²University of Washington, Seattle, Washington, email: jwerk@uw.edu

Contents

1.	A Very Brief History	2
2.	Galaxies in Gaseous Halos	3
	2.1. The Major Problems of Galaxy Evolution	3
	2.2. Our Point of View	6
3.	How We Study the CGM	8
	3.1. Transverse Absorption-Line Studies	8
	3.2. Stacking Analyses	9
	3.3. Down the Barrel	9
	3.4. Emission-line maps	9
	3.5. Hydrodynamic Simulations	11
4.	The Physical State of the CGM	
	4.1. The Complex, Multiphase CGM	12
	4.2. From Basic Observables to Physical Properties	13
	4.3. Line Profiles and Gas Kinematics	15
	4.4. Challenges in Characterizing the Multiphase CGM	
	4.5. Gastrophysical Models	17
5.	The Baryonic Mass Distribution of the CGM	19
	5.1. The Missing Baryons Budget	19
	5.2. CGM Masses by Phase	19
6.	Metals: Nature's Tracer Particles	25
	6.1. The Metals Census	25
	6.2. Metals Observed as Gas	26
	6.3. Metals Observed as Dust	
7.	Inflows, Outflows, and Recycling	29
	7.1. The Problems: Galaxy Fueling and "Missing" Metals	29
	7.2. Empirical Signs of Fueling and Inflows	
	7.3. The Preeminence of Outflows	31
	7.4. Following the Metals: The Role of Recycling	33
8.	The Paradox of Quenching	34
	8.1. The Fate of Cold Accretion and The Problem with Recycling	34
	8.2. The CGM of AGN and Quasars	37
9.	Open Problems, Future Prospects, and Final Thoughts	38
	9.1. Progress and Problems	38
	9.2. Future Prospects for Data	40
	9.3. Final Thoughts	41

9.3. Final Thoughts

Galaxies were understood as island universes long before astronomers discovered the interstellar gas that forms their stars. The intergalactic medium was added to the big picture
with the discovery of QSO absorption lines and the development of the dark-matter cosmology. Because it is much fainter than stars, and much smaller than the IGM, the CGM
is arguably the last major component of galaxies to be added but it has nevertheless become a vital frontier. As to why, it is clear that much has been learned by viewing galaxy
evolution from the perspective of the CGM. The circumgalactic medium can even provoke
fascination: might the heavy elements on Earth cycled back and forth through the Milky
Way's CGM multiple times before the formation of the Solar System? It appears that the
solution to major problems in galaxy formation that are still unsolved will run through this
elusive region of the cosmos.

Окологалактическая среда может даже спровоцировать на такой необычный подход: возможно, тяжелые элементы, присутствующие на Земле, уже прокрутились туда и обратно сквозь окологалактическую среду Млечного Пути несколько раз ещё до образования Солнечной системы.

Похоже, что решение основных проблем формирования галактик, которые до сих пор не решены, лежит в этой призрачной области космоса.

DISCLOSURE STATEMENT

The authors are not aware of any affliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

• Авторы не имеют отношения ни к каким аффиляциям, членствам, грантам или финансовым холдингам, которые могли бы быть восприняты как затрагивающие объективность этого обзора.