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ABSTRACT

We study Red Misfits, a population of red, star-forming galaxies in the local Universe.
We classify galaxies based on inclination-corrected optical colours and specific star
formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although
the majority of blue galaxies are star-forming and most red galaxies exhibit little to
no ongoing star formation, a small but significant population of galaxies (~11 per
cent at all stellar masses) are classified as red in colour yet actively star-forming. We
explore a number of properties of these galaxies and demonstrate that Red Misfits are
not simply dusty or highly-inclined blue cloud galaxies or quiescent red galaxies with
poorly-constrained star formation. The proportion of Red Misfits is nearly independent
of environment and this population exhibits both intermediate morphologies and an
enhanced likelihood of hosting an AGN. We conclude that Red Misfits are a transition
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Figure 1. Left: Vi weighted speeific star formation rate (sSFR) Gaussian kernalsmoothed distribution for galaxies in the full sample.
The local minimum at log(sSFR)=-10.8 yr~! defines our ‘active’ and ‘passive’ samples. Right: V,,-weighted (M, - M£)%! colour distri-
bution of galaxies in the full sample. A cut at (M - M)*!=0.67 mags defines our ‘red’ and ‘blue’ populations. Shaded regions in both

plots show 99% confidence intervals from 1000 bootstrap resamplings.
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Percent of Sample

Population Full Sample Emission-line Sample Group Sample Isolated Sample
(277785 galaxies) (90000 galaxies) (95648 galaxies) (112614 galaxies)

Blue Active 42.3% T4.7% 27.2% 52.2%

Bhie Passive 1.7% 1L.0% 1.6% 1.7%

Red Active 10.9% 15.4% 11.0% 10.9%

(Red Misfit)

Red Passive 45.1% 8.8% 60.2% 35.2%

Table 1. Populations of each of the four galaxy populations in the four samples.
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Figure 7. Distribution of Blue Actives (left), Red Passives (middle) and Red Misfits (right) in the emission-line sample on the BPT
diagram. Contours encompass 10%, 30%, 50%, 70% and 90% of the unweighted distributions. Lines from Kewley et al. (2001) and
Kauffmann et al. (2003b) define star-forming and AGN regions of the diagram as well as the compaosite region where emission from
stellar and non-stellar processes are comparable. The dotted line from Schawinski et al. (2007) separates the AGN region into a Seyfert
region and a LINER region.
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Figure 9. Vy-weighted satellite fractions of Blue Actives (top], Red Passives (middle) and Red Mishits (bottom) in our group sample
against group halo mass, Fractions are shown for galascies in the inner thivd (left column), middle thivd (middle column) and outer thivd
(right column) of the B/ R distribution, Resalts are also shown in three bing of stellar mass as different line styles corresponding to the
upper, middle and lower thirds of the stellar mass distribution. Insets zoom in on the Red Misfit results, Error bars are D9% confidence
intervals generated by the beta distribution as outlined by Cameron (2011).



[lepexoaHbI BO BCEX OTHOLLUEHUAX
TMnN? BHYyTpeHHU quenching?

(M?1 - MS) (dust-corrected)

W

o

|

b

'}

| ¥

¥ I

"o~

Iy -
-.g\hﬂ--“-""n“-u-
R -
&

LY o

- —— Red Misfits
.7 ===DBlue Actives
Red Passives

10.0

10.5 11.0 11.5

Mstellar (109’ MO)

Figure 12. a): Rest-frame k-corrected u —r colour against stellar mass for Red Misfits, Blue Actives and Red Passives. Colours are

log sSFR (yr'})

S
o

1
|
|

=12

] b)

s —Red Misfits

| - = -Blue Actives

;“' - e S Red Passives
) ==

T

9.

5

10.0 10.5 11.0

Mstellar (109’ MO)

not corrected for inclination but are corrected for dust reddening using the stellar continuum E(B— V) as measured by Oh et al. (2011).
Shaded green region shows the green valley as defined by Schawinski et al. (2014). b): sSFR against stellar mass for Red Misfits, Blue

Actives and Red Passives.

lines indicate our M, =10""M. and sSFR=10"1"8 v+~ 1 cuts.

lontours in both plots encompass 10%, 30%, 50%, 70% and 90% of the unweighted distributions. Dashed



Astro-ph: 1803.03967

A multi-wavelength study of the evolution of Early-Type
Galaxies in Groups: the ultraviolet view

Rampazzo R.!, Mazzei P.!, Marino A.!, Bianchi
L.?, Plana, H.2, Trinchieri G.%, Uslenghi M.%,
Wolter A.%



[Tpumep ynbTpaduoneToBbIX
koneu B SO ranaktuke rpynneot

Fig. 2 Swift-UVOT images of NGC 1533 in the Dorado group. Left panel: colour composite image in the U, B, V filters
(U=blue, B=green, V=red) and, right panel, in the W1, M2 and W2 filters (W2=Dblue, M2=green, Wl=red). The field of
view is 5'x5’, North is on the top, East to the left (Rampazzo et al. 2017). Bright ring/arm-like structures are detected in
ultraviolet. Furthermore, some of the ultraviolet bright regions, visible in the South-East region of the field, likely belong
to NGC 1533. Indeed, the galaxy extends far beyond the optical outer ring and it is embedded in a huge HI envelope
connecting it to IC 2038 (see Werk et al. 2010, and references therein)
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-h Swift offers a new perspective to study galaxies
e (Gehrels et al. 2004; Citterio et al. 1994; Burrows et al.
: 2005). It is equipped with the 30cm UVOT telescope with
____TL a relatively large FoV (17'x17'), W2 (Ao ~ 2030A),
3 M2 (Mg ~ 2231A), W1 (Ag ~ 2634131} ultraviolet filters
—_+ and a PSF (FWHM=2"92 for W2, 2745 for M2, 2/'37
5 - for W1) significantly improved with respect to GALEX.
= & This PSF is, in general, still to large to study the
s o bulge of nearby galaxies. Therefore, Suift-UVOT data
E 2 are useful to analyse the main body and the galaxy
e I outskirts, which have revealed unexpected features use-
3 ® uzss ful to understand the evolutionary history of galaxies

o 1 2 3 (Rampazzo et al. 2017).
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Massive galaxies are thought to form in two phases: an initial, early collapse
of gas and giant burst of central star formation, followed by the later accretion
of material that builds up their stellar and dark matter haloes (1) (2) (3) (4).
The globular cluster systems of such galaxies are believed to form in a similar
manner. The initial central burst forms metal-rich (red) clusters, while more
metal-poor (blue) clusters are brought in by the later accretion of less mas-
sive satellites (5) (6) (7) (8) (9) (10). This formation process is thought to lead
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Extended data Fig. 1. Colour composite (g,75w, 7s25w» 2s50L.p) HST image of the mas-
sive relic galaxy NGC 1277. The gy ;5w and zgs;p imaging was obtained with the HST
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Fig. 1. Spatial distribution of clusters in HST/ACS field. North is up, East is to the right
here. Individual clusters are shown as points. The locations of galaxies are indicated by galaxy
isophotes corresponding to 23 mag arcsec™ 2 in gymw. NGC 1277 is to left of centre in the
plots, with the neighbouring galaxy NGC 1278 located some 50 arcseconds (~ 17 kpc) to the
South East in projection. The red and blue clusters have been separated by taking a cut at
(garsw — 2ssorp)o = 1.15, typical of the peak separation between the red and blue clusters
in galaxies of this stellar mass (/7). Overplotted is a gaussian kernel density estimate map
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Fig. 2. The colour distribution of clusters in NGC 1277 compared to composite cluster
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clusters which, in projection, 1s 17 kpc from NGC 1277. The composite cluster system was
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ABSTRACT

The Milky Way's satellite galaxies and Globular Clusters (GCs) are known to exhibit
an anisotropic spatial distribution. We examine in detail this anisotropy by the means
of the inertia tensor. We estimate the statistical significance of the results by repeating
this analysis for random catalogues which use the radial distribution of the real sample.
Our method reproduces the well-known planar structure in the distribution of the
satellite galaxies. We show that for GCs several anisotropic structures are observed.
The GCs at small distances, 2 < R < 10 kpc, show a structure coplanar with the
Galactic plane. At smaller and larger distances the whole sample of GCs shows quite
weak anisotropy. Nevertheless, at largest distances the orientation of the structure
is close to that of the satellite galaxies, i.e. perpendicular to the Galactic plane. We
estimate the probability of random realization for this structure of 1.7%. The Bulge-
Disk GCs show a clear disk-like structure lying within the galactic disk. The Old Halo
GCs show two structures: a well pronounced polar elongated structure at R < 3 kpe
which is perpendicular to the galactic plane, and a less pronounced disk-like structure
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nse two different tensors: the inertia tensor and the reduced
tensor, which are constructed as follows:

n
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where S is the inertia tensor, .J is the reduced tensor, N
is the number of objects, x* is the distance from k-th ob-
ject to the center of the Galaxy along i-th coordinate axis,
R. = x3 + yi + 2i, R is the distance to each k-th particle.
The three eigenvalues of the inertia tensor (a,b and c) are
sorted in increasing order such that a>b>c. The degree of
the anisotropy is characterized by the ratios of the eigen-
values, ¢/a and b/a, both of which approach to 1 in case of
isotropic distribution. The eigenvectors of the tensor give us
the directions of anisotropy.
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Figure 5. The Anisotropy of 27 satellite galaxies quantified by the inertia tensor (equation (1). top row) and the reduced inertia tensor
(equation (2). bottom row). The left column shows the distribution of ¢/a as function of satellite galactocentric ¢

istance. The middle

column shows the distribution of b/a as a function of galactoce nts the cumulativ

itric distance. Each blue dot repre:

eigenvalue ratio of
on. The solid green line represents the median eigenvalue ratios for 10,000

these tensors computed for all galaxies interior to that posi
random samples that maintain the same radial distribution as the data, but whose polar and azimuthal angle has been randomised. The
dashed lines represent the =30 of such random distributions. The right column shows the angle, measured in degrees, subtended between
the Milky Way's galactic pole and the major (blue dots) and the minor (green triangles) axis of the two inertia tensors. Green triangles
close to 90 deg indicate a polar plane.
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SGs — satellite galaxies.



