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2. DATA

LEGA-C (van der Wel et al. 2016) is an ongoing
ESO Public Spectroscopic survey with VLT /VIMOS of
~ 3000 galaxies in the COSMOS field (R.A. = 10"00™;
Dec. = +2°12"). The galaxies were selected from the
Ultra-VISTA catalog (Muzzin et al. 2013b), with red-
shifts in the range 0.6 < z < 1.0. The galaxies were
K-band selected with a magnitude limit ranging from
K(AB) = 21.08 at z = 0.6 to K(AB) = 20.7 at z
= 0.8 to K(AB) = 20.36 at z = 1.0 (stellar masses
M, > 10'°Mg). These criteria were chosen to re-
duce the dependence on variations in age, SF activ-
ity and extinction, as well as ensure that the targets
were bright enough in the observed wavelength range
(0.6pem — 0.9m) to obtain high quality, high resolution
spectra (R ~ 3000). Each galaxy is observed for ~ 20h,
which results in spectra with S/N ~ 20 A—1,

The analyses in this work are based on the first-year
data release!, which contains spectra of 892 galaxies,
678 of which are in the primary sample and have a
S/N > 5A~! between rest-frame wavelengths 4000 A
and 4300A (typically, S/N ~ 20A~1). Emission line
subtracted spectra are used in the fitting algorithm;



Table 1. Properties of the FSPS template spectra.

BoccTtaHoBneHNe UCTopun
3Be31000pa30BaHNA®

Age Bin® SFR" M.¢  Lea®

log(yr) Mg [yr Ms  log(Lg)
0.000 —8.000 1.000 x 10™% 0.837 1.964
8.000 —8.300 1.005 x 107~% 0.711 0.885
8.300 —8.475 1.010 x 107% 0.748 0.650
8.475 — 8650 6.750 x 107% 0.731 0.497
8.650 — 8.750 8.646 x 1077 0.718 0.382
8.750 —8.875 5.332x107° 0.707 0.285
8.875—9.000 3.998 x 10~? 0.695 0.187
9.000 —9.075 5.305 x 10™% 0.685 0.127
9.075 —9.225 2.040 x 107% 0.671 0.099
9.225 —9.375 1.444 x 10~ 0.652 —0.043
9.375 — 9.525 1.022 x 10™% 0.639 —0.161
9.525 —9.845 2.681x 107'° 0618 —0.347

“ Age interval of CSP templates.
b SFR s.t. 1 Mg of stars formed within the interval.

“Stellar mass (including stellar remnants) with

mass loss accounted for.

4 Bolometric luminosity.
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Figure 1. Template CSP spectra used to it LEGA-C galax-
ies. They were generated from FSPS, using the time intervals
listed in Table 1, with solar metallicity and arbitrary velocity
dispersion; and they have been normalised and shifted here
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Figure 3. Distributions of M. prr (left), acyrw~ (middle) and a-pw- (right) of the LEGA-C sample. The quiescent and star-
forming populations (as defined in Section 5.1) are shown in red and blue, respectively. The distribution of the uncertainties
for each parameter are shown at the top of each figure.
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Figure 6. a.ayw- as a function of M. pyr (left) and o. (right). The star-forming and quiescent populations are indicated
in blue and red, respectively, and typical error bars are indicated in grey. Galaxies with . > 200kms™" are almost exclusively
old (> 4Gyrs) and quiescent, which indicates that o. is a stronger predictor of age and SF activity.
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Figure 8. Ensemble-averaged SFHs of LEGA-C galaxies, normalised by stellar mass and separated into various o. (top) and
M. rir, bins (bottom). The histories are divided into the star-forming and quiescent populations in the middle and right panels,
respectively. The stellar content in massive galaxies formed earlier and faster, regardless of current SF activity.
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Table 1. ALMA-Observed LEGA-C Sample Target Properties

LEGA-C ID Right Ascension  Declination Zapec 108 Maar /Mg SFR Scoz-1Av  log My, /Mg

Jykms™!

48
0100 kms—1

Mg /yr  ply/beam

74512 10"01™42.88°  +02°01'21.9" 0.7330 10.96 6.3 132 0.16 & 0.04 9.82 4 0.13
110509 10801™04.44°  402°04'37.2"  0.6671 11.00 6.5 160 0.24 + 0.04 9.92 4+ 0.07
130284 10800™13.78°  +02°19'37.0"  0.6017 10.96 6.8 151 0.36 & 0.04 10.00 £ 0.06
132776 10"00™12.43°  402°2121.9” 0.7500 10.98 7.9 163 0.33 £ 0.07 10.16 & 0.11
138718 10"00™13.80° +02°25'38.0"” 0.6558 11.13 5.6 188 <0.21 <0.84
169076 09"59™07.30° +02°1905.8"" 0.6772 11.49 5.1 256 <0.23 <9.91
210210 10800™35.55°  +02°31'04.2"  0.6544 11.38 3.6 212 <0.21 <9.84
211409 10"01™05.45° +02°32/03.7" 0.7140 11.13 6.6 188 <0.13 <9.72

Stacked Non-detections 0.67h4 11.31 5.3 106 <0.093 <9.51

“ALMA rms sensitivity in 100 kms ™' channels, naturally-weighted images

NoTE—LEGA-C ID numbers are the same as in the UltraVISTA catalog of Muzzin et al. (2013). Stellar masses are determined
by fitting to multiwavelength photometry using FAST. SFRs are based on a weighted sum of UV and IR (24 pm) fluxes. Inte-
grated CO(2-1) line fluxes are converted to molecular gas masses under the assumptions described in Section 2.3. Upper limits
for non-detections are 3¢, and molecular gas masses can be rescaled under different assumptions as Mp, (0.8/r21)(aco /4.4).
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ABSTRACT

The process by which massive galaxies transition from blue, star-forming disks into red, quiescent
galaxies remains one of the most poorly-understood aspects of galaxy evolution. In this investigation,
we attempt to gain a better understanding of how star formation is quenched by focusing on a massive
post-starburst galaxy at z = 0.747. The target has a high stellar mass and a molecular gas fraction
of 30% — unusually high for its low star formation rate. We look for indicators of star formation
suppression mechanisms in the stellar kinematics and age distribution of the galaxy obtained from
spatially resolved Gemini Integral-Field spectra and in the gas kinematics obtained from ALMA. We
find evidence of significant rotation in the stars, but we do not detect a stellar age gradient within 5
kpe. The molecular gas is aligned with the stellar component, and we see no evidence of strong gas
outflows. Our target may represent the product of a merger-induced starburst or of morphological

quenching; however, our results are not completely consistent with any of the prominent quenching
models.
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In this Letter, we examine an intermediate-redshift
PSB, SDSS J0912+1523, with a stellar mass of
~ 2x 10" Mg. The target was chosen out of a large
sample of PSBs (Suess et al. 2017) selected from the
SDSS DR12 catalog (Alam et al. 2015) and included in
Pattarakijwanich et al. (2016). The galaxies in the PSB
sample were identified by their strong Balmer breaks
and blue slopes redward of the break, as demonstrated
in Kriek et al. (2010). SDSS J0912+41523 was chosen as
the brightest, most A-star dominated source at the high
end of the sample’s redshift range, with z = 0.747 and
iap = 18.6 mag. SDSS J0912+1523 represents a rare
opportunity to study the spatially resolved kinematics
of a massive, recently-quenched PSB. Suess et al. (2017)
present ALMA observations of the galaxy’s molecular
gas. Here, we analyze the stellar component observed
by Gemini to obtain the kinematic properties and age
distribution of the stellar population. Combining the
stellar and gas data, we identify markers left by the
quenching process and constrain the means by which
SDSS J0912+1523 suppressed its star formation. We
assume a cosmology of {2,,, = 0.3, 2y = 0.7, and h = 0.7.
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Figure 1. (a) Median flux map of SDS5 J0912+1523 from the Gemini spectra, with contours overlaid onto the Voronoi bins.
(b) Full spectrum of the central Voronoi bin and the Hd 4 central bandpass, surrounded by blue and red ‘continuum’ bandpasses,
as defined by Worthey & Ottaviani (1997). The wavelengths of the [OII]A3727, [OIII)A4959, and [OIII]JA5007 lines are labeled.
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Figure 2. Stellar kinematic and spectral index maps. The two Aux peaks are marked with black + symhbols, The seeing is indicated with
grey bars, The left column shows the measured values of the (a) equivalent width of Hé 4, (b) velocity, and (¢) velocity dispersion o for

each Voronoi bin, The middle columm represents the estimated ervors for each measurement, Velocity (row b) is measured with respect to
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Figure 4. Stellar and cold molecular gas velocity fields of SDSS |Og M, /M.

J0912+1523, as observed by Gemini and ALMA. The stellar seeing

and ALMA beam are indicated in grey. The motion of the cold

molecular gas is consistent with the stellar component.



