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ABSTRACT

Context. Some post-merger galaxies are known to undergo a starburst phase that quickly depletes the gas reservoir and turns it into a
red-sequence galaxy, though the details are still unclear.

Aims. Here we explore the pattern of recent star formation in the central region of the post-merger galaxy NGC7252 using high
resolution UV images from the UVIT on ASTROSAT.

Methods. The UVIT images with 1.2 and 1.4 arcsec resolution in the FUV and NUV are used to construct a FUV-NUV colour map
of the central region.

Resulls. The FUV-NUYV pixel colour map for this canonical post-merger galaxy reveals a blue circumnuclear ring of diameter ~ 10"



UVIT — ynbTpadnonetoBbi
Teneckon Ha MHOUUCKOM CNYyTHUKE

* [1Be poTomeTpumyeckume nonockl, FUV
(1480 A) n NUV (2420 A).

* [1lpocTpaHcTBEHHOE pa3pellueHne — 1.2 u
1.4 ceKyHAObl Ayr1, COOTBETCTBEHHO.

 I1nAa oueHKn BO3pacToB 3BE34HOro

HacereHns ceopavnBanu CnekTpbl N3
STARBURST99 co cBonmMmM KpuBbiMin

nponyckaHns ansa obonx punbTpos.



O0bekT uccneposaHna NGC 7252

Blue photo GALEX
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Fig. 2: FUV — NUV colour map of the main body of NGC7252.
The pixels are colour coded in units of FUV — NUV colour. The
point spread function for UVIT is shown in black circle. The im-
age measures ~ 50" x 50" and corresponds to a physical size of
~ 16 kpc on each side. Age contours of 150 (red), 250 (green),
300 (blue) Myr are overlaid over the colour map to isolate re-
gions of constant age. The blue ring is clearly seen with bluer
colour clumps. The ring hosts young (< 150 Myr) stellar popu-
lations compared to the rest of the galaxy.
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ABSTRACT

Context. Superclusters form from the largest enhancements in the primordial density perturbation field and extend for tens of Mpc, tracing the
large-scale structure of the Universe. X-ray detections and systematic characterisations of superclusters and the properties of their galaxies have
only been possible in the last few years.

Aims. We characterise XLSSsC NO1, a rich supercluster at z~0.3 detected in the XXL Survey, composed of X-ray clusters of different virial
masses and X-ray luminosities. As one of the first studies on this topic. we investigate the stellar populations of galaxies in different environments
in the supercluster region.

Methods. We study a magnitude-limited (r <20) and a mass-limited sample (log(M, /M) > 10.8) of galaxies in the virialised region and in the
outskirts of 11 XLSSsC NOIT clusters, in high-density field regions, and in the low-density field. We compute the stellar population properties of
galaxies using speciral energy distribution (SED) and spectral fitting techniques, and study the dependence of star formation rates (SFR). colours,
and stellar ages on environment.



CBoucTBa 3Be3QHOro HaceneHus B:

* ~ 4000 ranaktukax Ha z=0.3,

* n3 kotopbix ~130 + ~130 npuHagnexar
11 PEHTITEHOBCKWM ckonneHusam,

* A ocTarnbHble — B NONAX Ppa3HOU
MNIOTHOCTMN.

* CneKkTpbl cobpaHbl NO pa3HbIM 0030pam,
K HUM npuknaabiBaetcs SINOPSIS —
donTTUHr cymmon 12 SSP pasHbix
BO3pacCTOB.
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Fig. 1: Sky distribution of galaxies in the XLS3sC NOI supercluster region. Top lelt: Galaxies with a photo-z redshilt in the range

between (.25 and 0.35 and used to compute the LD (black points). Top right: Galaxies with a spectroscopic redshift, colour-coded

according to their environment (see Sect. 3). Grey crosses are low-density field galaxies, green dots are high-density field galaxies,

dark orange diamonds are virial members, and black stars are outer members. In the wop panels, black circles show the projected

extension in the sky of 3 ry for each cluster in the superstructure. The two bottom panels show the low- and high-density held

samples separately, with the same symbols as the top right panel.
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Fig. 5: Colour-magnitude diagram for galaxies in the magnitude-
limited sample for the subset with both SINOPSIS and LeP-
hare outputs. Red points indicate passive galaxies, while galaxies
with log(sSFR)>-12 are colour-coded according to their sSFR.
The red dotted line shows the separation between red and blue

objects.
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Fig. &: Fraction of star-forming galaxics in diferend enviconments, computed with sSFR {lefl panel) and rest-frmme colour (right
pamel). The fractions oblaned vsing the magniode-lmaed sample aee represented with Gilled symbols and solid ermocs, thoee ob-
tained using the mass-limited sample are represented by empty symbals and dashed ecror bars. Brvors are derived by means of a
bootsimp method, The two lower panels show the guenching eficiency (Q.E.) in different eovironments, computed with equation
3 for bivh the star-forming and blue samples, The CLE, of field galoxies, which 1s by defimiton set i zero (see Eg. 30, is shown
biovih pancls as a reference. The coror bars on the QUE of the low-density Aeld depend on the amplitude of the confidence intervals
aemocinted with the Mactions of star-forming and passive galaxies rom bootsteapping.



VI OonbLUe HeT pa3nnynga no Tuny
OKDV>KEeHUS!

: Lo dorwey b A High daroy faid B Loty fmdd
LR TR TR (kP i+ & Jaw wsnbet ey b
¥ Yokl ke ur revban
] B3 vid e [ 13
4
= e i
E)
= £
= U i 3
= a
u [}
Ll =
? 11 i
12 i
13 T T T T T T i}
110 115 e s a LLE 2 1 B 1 2 :
Lewg{ Mazs, 1) Log{Maszs, M) &sSFR

Fig. 7: Specific star formation rate (<5FR -mass relation for galaxies in the low-density field (left pancl), and galaxies in the high-
density field and cluster viral and ower regions {green dots, orange diamonsds, and black stars in the centeal panel), The vertical amd
horizantal lines show the stellar mass limit and our adopted separation between star-forming and passive galaxies. The blue dashed
lime 3= thiee 0 1o the relation of the saomple mcluding all the enviromments, The ight panel shows the disteibation of the dilferences
between the galaxy s5FRs and their expected values secording 1o the At given their mass.

3 = 1L
0.5
- 2
|:-\_ a0
— ! 7 i
=) 3 i %
e A K'? L T oAb
st 1] 3 - - z ™
[ . =L
b ; ﬁ T-" il g 5
= x . = S
a - = Low-darniny fisk
= -1 s == High-saraity fuld 7.0
I = Oute e
a , f il [ === Law-density field
11.0 11.5 1Z.0 12,5 = Mirial members
Log(Mass/Ad.) G —— High-tensity field

95 ! L5 A A 4
Fig, 8 SFR-mus= relation lor galaxies i te low-density field o H L::;(Mm.’lllflj LUz =
(grey crosses), in the high-density field (peeen dows), cluster L
virial (orange diamonds), and outer members {black stars). The . i N . B .
red dushed verical lime shows (e stellor mass it The blue F'%c'dg.' Mcdn;ndcluum:im:t}:ﬁ.mghtc.d.T:!gc.—llrnfﬁ;:-."m!.ntlm I'.mm"
line iz the fit to the relation including all the environments, and ::;ms“:é“;ﬂ;:““ {:l:lwl]::;mtdﬁ'mtl#mhr rr:uﬁ; I::rl:ll: i‘;l:I:::j':"r-l
the shaded areas correspond W Ter errors em the Bling hoe, Lin- i 3 = :
car fits for cach environment are shown separately in the figure, EP:H‘ a \crtu:_nll hln.cl fashed .Im':' Shaded ‘H-E‘E arc the 32nd and
colour-coded according to the legend. The black dashed line rep- th percentiles, comresponding 1o Ter emor bars,

resents the logi=SFR=-12 limil,



1805.03903

MAGNETIC FIELDS IN THE GALACTIC HALO SUPPRESS FOUNTAIN-DRIVEN RECYCLING AND
ACCRETION

Ascer GronNow.! THOR TEPPER-GARCIA,! AND Joss BLAND-HAWTHORN' 2

L Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia
2 Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Australia

Submitted to Astrophysical Journal

ABSTRACT

The Galactic halo contains a complex ecosystem of multiphase intermediate-velocity and high-velocity gas clouds
whose origin has defied clear explanation. They are generally believed to be involved in a Galaxy-wide recycling
process, either through an accretion flow or a large-scale fountain flow, or both. Here we examine the evolution of
these clouds in light of recent claims that they may trigger condensation of gas from the Galactic corona as they
move through it. Specifically, we measure gas condensation along a cloud’s wake, with and without the presence
of an ambient magnetic field, using two- and three-dimensional, high-resolution Adaptive Mesh Refinement (AMR)
simulations. We find that three-dimensional simulations are essential to capture the condensation even when no
magnetic field is included. Magnetic fields significantly inhibit condensation in the wake of clouds at ¢+ = 25 Myr,
preventing the sharp upturn in cold gas mass seen in previous non-magnetic studies. The magnetic field suppresses the
onset of the Kelvin-Helmholtz instability which is responsible for the ablation and consequent mixing of cloud and halo
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Table 1. Fixed simulation parameters

Uwind,x 3 Fih Th [Ff'ff'(H]h Fe £ y <
kms™') (cm™3) K (kpe) (kpc) (kpc) (kpc)
75 10~% 2 108 -0.5 0.1 —06<zx<06 —06<y<06 —-20<z<10.0

“This corresponds to a Mach number of 0.45.
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