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ABSTRACT

Mass and specific angular momentum are two fundamental physical parameters
of galaxies. We present measurements of the baryonic mass and specific angular mo-
mentum of 11 void dwarf galaxies derived from neutral hydrogen (H1) synthesis data.
Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the
derived curves generally overlap within the error bars, except in the central regions
where, as expected, the 3D routines give steeper curves. The specific angular momen-
tum of void dwarfs is found to be high compared to an extrapolation of the trends
seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular
galaxies that lie outside of voids. As such, our data show no evidence for a dependence
of the specific angular momentum on the large scale environment. Combining our data
with the data from the literature, we find a baryonic threshold of ~ 10°-! My, for this
increase in specific angular momentum. Interestingly, this threshold is very similar



Bbibopka ranaktmk BoUaos,
Habnogaswmxcsa B HI

Table 1. Parameters of galaxies selected for this study

Name d Mg My Obs.Date Telscope
(Mpc) (10"Ma)

KK246 6.850 -13.69 9.0 09.07.2010 VLA
DDOAT 8.040 -14.78 52.3 28.09.1984 VLA
UGC4115 7T.730 -14.75 31.9 08.07.2004 VLA
UGC3501 10.07 -1332 8.6 22.11.2014 GMRT
JO737+4724 1040 -1250 1.8 24.11.2011 GMRT
J0926+3343 10.63 -12.90 5.2 21.08.2015 GMRT
UGCH288 11.41 -15.61 90.2 20.01.1999 VLA
UGC4148 13.56 -15.18 784 01.10.2015 GMRT
JO630+4-23 22,92 -15.89 135.1 12.09.2015 GMRT
J0626+-24 23.21 -1564 63.8 03.056.2015 GMRT
J0929+41155 24.29 -14.69 36.6 23.04.2015 sMRT

Notes: All the galaxies except KK246 are from Lynx-Cancer void.
All the parameters are taken from Pustilnik & Tepliakova (2011)
and from Kreckel et al. (2011a) for the galaxies in Lynx-Cancer
void and KK246 respectively.
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Figure 1. Log j,-log Myrelation of 11 dwarf galaxies residing in
Lynx-Cancer void from this work (black open circles), 12 dwarf
galaxies from Butler et al. (2017) (red squares) and 5 dwarf galax-
ies from Chowdhury & Chengalur (2017) (green diamonds). The
blue dotted line indicates the 3 = 0 plane of j,- Myrelation ob-
tained for the massive spiral galaxies by Obreschkow & Glaze-
brook (2014) and was recomputed by Chowdhury & Chengalur
(2017). The black solid line is the best fit line for the dwarf galax-
ies using the linear regression. The galaxies from Butler et al.
(2017) that were identified as being discrepant are marked with
a circle around the red squares.
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Figure 1. Integrated intensity maps for the two post-starburst targets for HCN (1-0). The galaxy optical centers are
at (0,0) on each plot. Neither source is detected.
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purple diamonds), early type galaxies from Crocker et al. (2012) (red circles and arrows), and post-starburst galaxies
French et al. (2015) (black squares and arrows). Filled black squares represent the two galaxies targeted for dense gas
observations. Characteristic error bars are shown in the bottom right of each panel. All upper limits are at the 3o level.
The post-starburst galaxies have systematically low SFRs for their CO luminosities. The two post-starburst galaxies
targeted for HCN observations are representative of the post-starburst population. Middle: SFR vs. L'(HCN) for the
same samples. HCN is not detected for either post-starburst galaxy studied here, consistent with their low SFRs and
with the early type galaxies. The absence of denser gas traced by HCN reveals why the SFRs of post-starburst galaxies
are so low. Right: SFR vs. dense gas luminosity ratio L'(HCN)/L'(CQO). The post-starburst galaxies targeted here
have low HCN/CO luminosity ratios compared with the starbursting, star-forming and many CO-detected early type
galaxies. The low HCN/CO luminosity ratios of the post-starbursts indicate the dense molecular gas fraction has

changed since the starbursting phase and is different than in normal star-forming galaxies.
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ABSTRACT

Based on the stellar orbit distribution derived from orbit-superposition Schwarzschild
models, we decompose each of 250 representative present-day galaxies into four orbital
components: cold with strong rotation, warm with weak rotation, hot with dominant
random motion and counter-rotating (CR). We rebuild the surface brightness ()
of each orbital component and we present in figures and tables a quantification of
their morphologies using the Sersic index n, concentration C' = log (X915, /2. ) and
intrinsic flattening gre. and grmax, with R, the half-light-radius and R, the CALIFA
data coverage. We find that: (1) kinematic hotter components are generally more
concentrated and rounder than colder components, and (2) all components become
more concentrated and thicker/rounder in more massive galaxies; they change from
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We created orbit-superposition Schwarzschild models
(van den Bosch et al. 2008) which simultaneously fit the
observed surface brightness and stellar kinematics for each
galaxy (Zhu et al. 2018b). Orbits are characterized by two
main properties: the time-averaged radius r representing the
size of each orbit, and circularity, A: = J. /Jmax(F) around
the short z axis, normalised by the maximum of a circu-
lar orbit with the same binding energy E. Circular orbits

2.2 Orbital decomposition

The technique of orbital decomposition has been deseribed
in detail in Zhu et al. (2018b). Given the overall circular-
ity distribution, p(A.), we divide the orbits within 1 R, into
four components: cold (0.8 < A. < 1), warm (0.25 < A. <
0.8), hot (—0.25 < A. < 0.25) and counter-rotating (CR;
A= < —0.25). We denote the galaxy’s stellar orbit distribu-
tion within 1 R, as luminosity fractions of four components:
feold, fwarm, fhot, and for. The separation and orbit frac-
tions are the same as in Zhu et al. (2018a). The uncertainties
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Figure 1. Orbit fractions as function of galaxy's total stellar mass
M, . From top to bottom: cold, warm, hot and CR orbital frac-
tions (fosid s fwarm, fhots for). Black pluses, black crosses, blue
asterisks, orange triangles and red diamonds represent Sc-5d, Sh,
Sa, 50 and E galaxies, with symbol sizes indicating the luminosity
fractions, The short vertical lines indicate the 1o uncertainties,
including both statistical uncertaintics as well as systematic bi-
ages and uncertainties as inferred from tests with simulated galax-

Thu et al. 2018487, we have errors for all, bat only shown that
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name of the galaxies are listed at the top of columns, as well as their Hubble types and their total stellar masses as log( M. /Mqs). In
the left panels, we show the 2D surface brightness of the best-fitting model. The colorbars indicate the values of the normalized surface
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the mean (solid line) and 1o scatter (dashed lines) of the 1D SB along major axis from the models within 1o confidence level, with x

axis in B/R., y axis in the same unit as the density maps on the left.
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ABSTRACT

Several models have predicted that stars could form inside galactic outflows and that this
would be a new major mode of galaxy evolution. Observations of galactic outflows have
revealed that they host large amounts of dense and clumpy molecular gas, which provide
conditions suitable for star formation. We have investigated the properties of the outflows
in a large sample of galaxies by exploiting the integral field spectroscopic data of the large
MaNGA-SDSS4 galaxy survey. We find that star formation occurs inside at least half of the
galactic outflows in our sample. We also show that even if star formation is prominent inside
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Figure 1. Example of simultaneous stellar continuum and emission line fit to the spectrum extracted from the central region of a representative galaxy in our
sample. A: Full spectrum decomposition showing the simultaneous stellar continuum (red) and emission line (orange) fit to spectrum. Shown below the fit
are the residuals (blue) and the error spectrum (magenta) for the galaxy. The OII 5577 sky line has been masked, shown here by the grey shaded area. B:
Subsections of continuum-subtracted spectra, showing some of the relevant emission lines used in the analyses. The decomposition of the narrow (orange) and
broad (blue) components can be seen, alongside the total fit of the two components (red).
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Figure 3. Left: Velocity dispersion of the narrow component of the nebular lines in the central region compared with the stellar velocity dispersion. As
expected, the narrow component has a velocity dispersion similar to the stellar velocity dispersion, or even lower, owing to the fact that the gas disc is
generally dynamically colder than stars. Right: Velocity dispersion of the broad component of the nebular lines in the central region compared with the stellar
velocity dispersion in the same region. The former is much larger than the latter, indicating that the broad component cannot result from beam smearing effects
of the central rotation curve and that it must be associated with non-virial motions, i.e. outflows.
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Figure 5. Median BPT classification of the outflows for the galaxies in our sample. According to their median BPT classification in the [SII] and [OI] diagrams
(central and right panes), about 30% of the galactic outflows in our sample are “star forming”. The same applies to the [NII] classification if one includes
galaxies classified as “composite™ (however, one should take into account that the [NII] classification is more ambiguous, as discussed in the text).
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Figure Y, Star formation rate inside the outflow as a function of the star
formation rate in the same central projected area in which the outflow 1s
detected.
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Figure 12. Star formation rate versus stellar mass diagram. The background
contour plot shows the distribution of all 2,800 galaxies in the MaNGA sam-
ple. The symbols show the distribution of galaxies with outflows presented
in this study, i.e. those for which the outflows can be analysed in the BPT di-
agram. The BPT classification of the outflow is the same as in the [SII]-BPT
diagram of Fig.5. Most outflows, especially those hosting star formation in-

side the outflow, are located around the massive end of the Main Sequence,
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ABSTRACT

We report evidence of “environmental quenching” among galaxies at redshift =~ 2, namely the probabil-
ity that a galaxy quenches its star formation activity is enhanced in the regions of space in proximity of
other quenched, more massive galaxies. The effect is observed as strong clustering of quiescent galaxies
around quiescent galaxies on angular scales ## < 20 arcsec, corresponding to a proper(comoving) scale
of 168 (502) kpc at z = 2. The effect is observed only for quiescent galaxies around other quiescent
galaxies; the probability to find star-forming galaxies around quiescent or around star-forming ones
is consistent with the clustering strength of galaxies of the same mass and at the same redshift, as
observed in dedicated studies of galaxy clustering. The effect is mass dependent in the sense that the
quenching probability is stronger for galaxies of smaller mass (M, < 10'"Mg) than for more massive

-y e BT i e e T e e e e B e B L T e T e Tl TEho



[[anakTukn 6e3 SF Ha z=2 (GOODS)
CKy4YeHbl cUIbHee, YeM ntoodbie gpyrne

10" |w — (98, LBG at z=3 .
— KO06, BzK at z=2
— HO07, BzK at z=2
k. F-I Quiescent

% | T - Star-forming

1 +w(6)

MH&]_O :J. -8 Xl(]13 Mr} MH&]_O :1'.-] 0 Xl(}ll M, MH&10:2'8 Xloll M@

10° 10°
B(arcsec)



... 1 39TO HE adpeKkT macchl

100 - I--I Quiescent

F-[ sStar-forming

1 Star-forming around Quiescent
. F Mass-matched Star-forming

1 4w(6)

10° |

O(arcsec)



XOTHa YeM MaCCUBHee ranakTuka,
TEM paHblle OHa 3aKkaH4mBaeT SF

4.0
0.002 0.016
3.5f
1 (623) 4 (254)
3.0¢ 0.005 0.024 0.181
E 7 (1333) 14 (587) 36 (199)
E 2,50
0.007 0.035
2.0 13 (1891) 30 (859) | BY (360]
ik 0.018 0.093
37 (2105) B6 (923)
9.0 95 10.0 10.5 11.0 11.5
[ﬂEm{MJM@)

Figure 9. Quenched fraction as a function of stellar mass
and redshift. In each bin, the number in black is the
quenched fraction, the number in red is the number of qui-
escent galaxies and the number in blue is the total number
of galaxies.



