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ABSTRACT

We present a systematic study of the extraplanar gas (EPG) in a sample of 15 nearby late-type galaxies at intermediate inclinations
using publicly available, deep interferometric HI data from the HALOGAS survey. For each system we mask the HI emission
coming from the regularly rotating disc and use synthetic datacubes to model the leftover “anomalous’ HI flux. Our model consists
of a smooth, axisymmetric thick component described by 3 structural and 4 kinematical parameters. which are fit to the data via a
Bayesian MCMC approach. We find that extraplanar H I is nearly ubiquitous in disc galaxies, as we fail to detect it in only two of
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Table 1. Physical properties of galaxies in our sample. from H11 and Heald et al. (2012). We also list the median kinematical
inclination (INCgg) and position angle (PAgg ) found with “PBaroro and used in our EPG modelling.

uGcC Other name T}fpt‘: dist. INC[.[“ NCEE PAEE ng Mﬁ' Vrat SFR
(Mpe)  (°) ¢) () (mag (kms™) (Myyr)
1256 NGCO0672 SBcd 7.6 70 67.6 64.2 6.4 -18.65 130.7 0.23
1913 NGC 0925 SABd 0.1 54 57.9 2847 11.3 -19.66 102.4 0.77
1983 NGC0949 SAd 11.3 52 52.5 160.8 3.5 -17.85 90.9 0.31
2137 NGC 1003 SAcd 11.6 67 70.4 276.3 6.3 -18.61 95.5 0.40
3918 NGC 2403 SAcd 32 62 62.5 1246 238 -19.68 121.9 0.6
4284 NGC 2541 SAcd 12.0 67 63.8 171.8 7.2 -18.37 92.1 0.55¢
S92 NGC3198 SBc 14.5 71 70.0 2143 8.8 -19.62 148.2 L
7045 NGC4062 SAc 16.9 68 67.1 100.1 4.5 -18.27 140.5 0.67
7353 NGC4258 SABbc 7.6 71 74.0 331.9 17.1 -20.59 208.0 1.5
1377 NGC4274 SBab 19.4 72 71.3 2798 6.5 -19.22 2399 1.2
7539 NGC4414 SAc 17.8 50 539 159.7 4.5 -19.12 224.7 4.2
7591b NGC4448 SBab 9.7 71 3.5 04.4 3.8 -1843 221.6 0.056
7766 NGC4559 SABcd 7.9 69 68.0 323.1 11.3 -20.07 113.4 0.69
8334 NGC 5055 SAbc 8.5 55 65.2 99.4 13.0 -20.14 #28 b fo| 2.1
9179 NGC 5585 SABd 8.7 51 504 48.2 5.5 -17.96 79.1 0.41
4 based on TIR+UV measurements from Thilker et al. (2007) and re-scaled to the distance used in this work.

Heald et al. (2012) report only an upper limit based on a non-detection with IRAS 25um.
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Fig. 1. A sketch of an observation of extraplanar gas in a galaxy seen at intermediate inclination. The typical line profile (along the kinematic major
axis of the galaxy) will be composed by a nearly Gaussian part coming from the thin disc with overlaid a tail at low rotation velocity produced by
the lagging EPG layer. The width of the disc emission is roughly symmetrical, produced by gas turbulence and well fitted by a Gaussian function
{blue solid line). The EPG separation is achieved by masking a portion of the profile with substantial contribution from this Gaussian function
(“internal mask’ region).
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The EPG kinematics i1s described by four parameters: the
vertical gradient in the gas rotational speed (dvy/dz), the veloci-
ties in the radial and 1n the vertical directions (vg and v,), and gas
velocity dispersion . Thus the EPG i1s allowed to rotate with a
different speed with respect to the material within the disc (or to
not rotate at all, for dvg/dz < 0). It can globally accrete onto or
escape from the galaxy, can move n/out and have a different ve-
locity dispersion. These simple kinematical parameters allow us
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Table 4. Best-fit parameters and associated uncertainty for the EPG of the galaxies studied in this work.

Galaxy Beam  Independent Murerc ferc Ry ¥ h dvg/dz Vi V; o
(arcsec) voxels (10 M:) i kpc) {kpc) (kms ! kpe b (kms h ({ kms h (kms h
(L) (2) (3) (4) (3) (6) (7) (8) (9 (10) (11) (12)
NGC0672¢  42x32 936 4.9 0.14 6304 0.1z0.1 1.5+0.1 -8.4+0.5 -258x14  -354+24 25.320.9
NGC 0925¢  38x33 870 7.6 0.14  09=0.1 13.3x2.1 2.0x0.1 9.7+0.7 3.3+35 -17.8+£5.6 21.6x1.3
NGC 0949 39x35 190 1.6 0.27 3908 0505 1.6x0.1 -18.0x1.4 -296+35  -19.1x£3.5 27.7x1.6
NGC 2403 30x29 4797 39 022 2301 26+03 09x0.1 -11.7+0.5 2109 94412 15.2+0.4
NGC 2541 34x34 634 7.4 0.15 - 49+1.0 2.8+0.1 -6.5+0.3 243+19 -159+2.3 27.4+1.0
NGC 3198 35x33 637 9.8 0.09 21=+05 98+28 14202 92+14 -1.5+2.6 8.1+8.9 23.0+1.2
NGC 4062 39x34 148 2.1 0.11 - 50+£22 2.5+0.1 Q4+1.0 -25.8+5.8 23+7.5 34.6+2.0
NGC 4258 33x33 1422 6.6 0.11 66=+1.1 23+04 14401 -10.0+0.5 -17.3+1.3  -27.2+38 24.8+0.7
NGC 4414%  39x33 194 5.1 0.12 - 3.7+1.9  0.5+0.3 58" %% -39.5+48 -13.1+14.2 26.3+2.9
NGC 4559 41x32 926 6.0 0.13 1903 4009 1.7x0.1 -8.2+0.6 -19.8+25 -339x4.1 21.3+1.2
NGC 5055 36x33 491 2.6 0.04  L1x02  83x15 0.6=x0.1 40 f3 -13.7+£39  -395+8.6 20.2+2.4
NGC 5585 34x33 368 3.0 0.12 2.5'1',:3 2618 1403 2.3x0.8 04+24 5.4+4.0 18.5+1.0

Notes. (1) NGC name; (2) FWHM of the synthesised beam: (3) Number of independent EPG voxels modelled, computed as the number of voxels in the
masked dataset with intensity above twice the rms-noise divided by the number of voxels per resolution element (eq. 6); (4) H 1 mass of the EPG component,
with an uncertainty of ~ 20%; (5) ratio between Mgpg and the total HI mass; (6-7) surface density parameters (eq. 1), a *-’ indicates that the parameter is
unconstrained; (8) scale height (eq. 2); (9) vertical rotational gradient: (10) velocity in the direction perpendicular to the rotational axis (positive values mean
outflow): (11) velocity in the direction perpendicular to the disc (positive values mean outflow): (12) velocity dispersion.

“ Interacting systems.

b Poorly-fit systems, which are also warped. The fit is limited to (and fgpg is computed within) the innermost 20 kpc.
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Kinematics of the extraplanar gas
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SFR vs mass of EPG

Prediction from galactic fountain model
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Fig. 11. Left panel: SFR vs EPG mass for our HALOGAS sample. Right panel: theoretical EPG mass predicted by a galactic fountain model
(eq.11 with 8 = 7) vs that inferred from the data. The two panels span the same range (~ 1.5 dex) on both axes. Error-bars are determined by
assuming a 10% uncertainty on the distances and a 20% uncertainty on the total SFR, in addition to the uncertainty on the Rgpp discussed in
the text. Interacting galaxies and systems with a poorly fit EPG are shown with separate symbols. We have also included NGC 891 (Mgpg from
Marinacci et al. 2010b) and the Milky Way, for which we used Mgpg=3.2 £ 1.0 x 10°* My (MF11), and assumed fiducial values for SFR, Rggg and
vaa 0of 2+ 1M, yr™!, 2.5 £+ 0.5 kpe and 240 + 10km s™' respectively.
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The local expansion rate of the Universe is parametrized by the Hubble con-
stant, [{,, the ratio between recession velocity and distance. Different tech-
niques lead to inconsistent estimates of ;. Observations of Type Ia super-

novae (SNe) can be used to measure [, but this requires an external calibra-

tor to convert relative distances to absolute ones. We use the angular diam-
eter distance to strong gravitational lenses as a suitable calibrator, which is
only weakly sensitive to cosmological assumptions. We determine the angular
diameter distances to two gravitational lenses, 810750 and 1230750 Mpc, at
redshifts of > = 0.295 and 0.6304. Using these absolute distances to calibrate

740 previously-measured relative distances to SNe, we measure the Hubble

constant to be Hy = 82.475% kms ™ Mpc ™.
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Figure 3: Normalized posterior probability distributions for the angular diameter distance
to the lens B1608+656. (A, C) include lensing and time-delay information, while (B, D) in-
clude additionally the kinematics of the lens. The blue hatched distribution shows the results if
the external convergence distribution is estimated by ray-tracing through the Millennium Sim-
ulation (34) (Fig. 54), while the red diswribution is the result when the external convergence
is set to zero. By including the kinematic information, the angular diameter distance becomes
insensitive to k..
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Our analysis constrains the angular diameter distances to 12-20% precision per lens. We
marginalize over the uncertainties in anisotropy models by merging two posterior probability
distributions of OM and TPE models (Section S6). Our final measurements of the angular
diameter distances are Dy(z = 0.6304) = (1.237015) x 10° Mpc for B1608+656, and Dy(z =
0.295) = (8.1715) x 102 Mpc for RXJ1131-1231.

We apply these distances as anchors to the 740 SNe in the Joint Light-curve Analysis
(JLA, (37)) dataset, allowing us to constrain H, and the SNe nuisance parameters (Section S7)
simultaneously. We use the MontePython code (38) to perform a Markov Chain Monte Carlo
analysis. Fig. 5 shows the resulting Hubble diagram, i.e. the absolute luminosity distances

Dy, = (1 + 2)?Dy as a function of redshifts for a flat ACDM model.
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Figure 6: Constraints on the Hubble constant for six cosmological models. The gray shaded
area is the constraint from the local distance ladder (4), while the green line is from three time-
delay distances measured by the HOLICOW collaboration (24). The thick and thin solid lines
denote the 68% and 95% Confidence Levels of the joint fit to the SNe and the D, data. We
emphasize that Dy and DA, determined from the same lens are not correlated strongly because
the uncertainty in the former is dominated by the kinematics and the latter by x.y in the case of
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