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ABSTRACT

We present ALMA Band 6 (v = 233 GHz, A = 1.3 mm) continuum observations towards 68 ‘normal’
star-forming galaxies within two Coma-like progenitor structures at z = 2.10 and 2.47, from which ISM
masses are derived, providing the largest census of molecular gas mass in overdense environments at
these redshifts. Qur sample comprises galaxies with a stellar mass range of 1 x 10° M — 4 x 10 M
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a massive cluster in formation, according to cosmological
simulations (Chiang et al. 2013). This active formation
phase is further support by the high number of extreme
galaxies within the proto-clusters. The z = 2.10 struc-
ture contains 9 rare DSFGs and 4 AGNs, has a total star
formation rate (SFR) of ~ 5300 Mg yr—!, total stellar
mass of ~ 2 x 1012 Mg, a galaxy overdensy of dua ~ 8,
and an estimated total halo mass of ~ 2 x 10 Mg
(Spitler et al. 2012; Yuan et al. 2014; Hung et al. 2016;
Casey 2016). Similarly, the z = 2.47 structure contains
at least 7 rare DSFGs and 5 AGNs, implying an over-
density of d,a ~ 10, a total SFR of ~ 4500 Mg ¥ 1,
total stellar mass of ~ 1 x 10'%2 M, and halo mass of ~
8x 1013 M, (Casey et al. 2015; Casey 2016). This proto-
cluster might indeed be embedded in a larger structure
including several overdensities within a redshift range of
z = 242 — 2.51 (Chiang et al. 2015; Diener et al. 2015;
Lee et al. 2016; Wang et al. 2016; Cucciati et al. 2018;
Gomez-Guijarro et al. 2019). Both structures are pre-
dicted to exceed = 1 x 10" Mg by z = 0. The sources
targeted in this work are ‘normal’ star-forming galax-
ies with confirmed spectroscopic redshifts in these two
structures. These rest-frame UV /optically selected sys-
tems are indeed expected to be more representative of
the star-forming population than the extreme sources
surveyved in previous studies, allowing for a detailed
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Figure 1. Distribution of our targets in the SFR-M. plane
in comparison with the star-forming main sequence. Sources
detected with ALMA are represented by the blue and red
solid circles while non-detections are identified with the blue
and red asterisks. Blue svmbols correspond to those galax-
ies in the z = 2.47 proto-cluster while red symbols denote
members of the z = 2.10 structure. The adopted control
sample drawn from Scoville et al. (2016) is shown as gray
asterisks. Additionally, two different parametrization of the
star-forming main sequence at the mean redshift of our sam-
ple are shown. The gray shaded area represents the relation

derived by Speagle et al. (2014) and gray dashed line the one
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Figure 2. The SFR-M,,a relation as a proxy for the SFE.
The z = 2.10 and 2.47 proto-clusters member galaxies de-
tected by ALMA are represented by the red and blue filled
circles, respectively, while the individual non-detections are
plotted as 30 upper limits (small red and blue left arrows).
The 3.30 detection from the stacking of the non-detected
galaxies with SFRs = 10 — 100 in the z = 2.47 protocluster
is illustrated by the large open blue circle, while the 3o upper
limit derived from the stacking of the analogous galaxies in
the z = 2.10 proto-cluster is illustrated by the large red left
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Figure 3. Comparison between the COLDz gas mass func-
tion derived from CO(1 — 0) observations at z = 2.4 (gray
squares, Riechers et al. 2018) and the gas mass function de-
rived from our ALMA follow-up of proto-cluster galaxies at
similar redshifts (colored triangles). As described in the text,
our measurements are formally lower limts since only a frac-
tion of the proto-cluster members were observed. Therefore,
it is likely that, after taken into account the incompleteness
effects, the proto-clusters show an enhanced gas mass func-
tion (and hence gas volume density) compared to the field.

Stellor mass [M_]

Figure 4. The molecular gas fraction of the proto-cluster
members as a function of stellar mass (blue and red for the
z = 2.10 and 2.47 structures, respectively), along with other
measurements from the literature. Solid circles represent
the ALMA detected galaxies while the small downward ar-
rows are the respective upper limits for the individual non-
detections. Large open circles and large downward arrows
represent the results from the stacking of the non-detections
of subsamples divided by stellar mass and redshift (see Ta-
ble 3). The typical 3¢ detection limit of our survey is il-
lustrated by the dotted line. The derived gas mas fraction
of most of the detected galaxies are in good agreement with
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Figure 7. ALMA dust continuum detection fraction as a function of stellar mass for galaxies within z = 2 — 3. Previous
ALMA blank-field observations (Bouwens et al. 2016; Dunlop et al. 2017) and follow-ups of field galaxies (Scoville et al. 2016)
show a higher detection fraction than the one achieved towards the proto-cluster galaxies studied here (colored in red and
blue), despite having similar depths. The difference is clearly evidenced by the detection fraction of the most massive galaxies
(M, > 2x10" Mg), as shown in the right panel. This implies a higher fraction of quenched gas-poor galaxies in the proto-cluster
structures than the one found in the field at the same cosmic epoch, suggesting that massive galaxies in dense environments

undergo an accelerated evolution.
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ABSTRACT

We investigate a large sample of massive galaxies at z ~ 1 with combined HST broad-band
and grism observations to constrain the star-formation histories of these systems as they tran-
sition from a star-forming state to quiescence. Among our sample of massive (M, > 10" M.,)
galaxies at 0.7 < z < 1.2, dust-corrected Ha and UV star-formation indicators agree with a
small dispersion (~ 0.2 dex) for galaxies on the main sequence, but diverge and exhibit sub-
stantial scatter (~ 0.7 dex) once they drop significantly below the star-forming main sequence.
Significant Ho emission is present in galaxies with low dust-corrected UV SFR values as well
as galaxies classified as quiescent using the UV J diagram. We compare the observed Ho flux
distribution to the expected distribution assuming bursty or smooth star-formation histories,
and find that massive galaxies at z ~ | are most consistent with a quick, bursty quenching
process. This suggests that mechanisms such as feedback, stochastic gas flows, and minor
mergers continue to induce low-level bursty star formation in massive galaxies at moderate
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In our sample we select from the 1754 galaxies for which the
3D-HST catalogs contain a measurement of the Hee flux, have a
stellar mass (M, ) above 101? M., and are between z of 0.7 and
1.2. These limits are identified so that Ha is detectable well below
the main sequence: the 3¢ He detection limit taken from Mom-
cheva et al. (2016) reaches 1.3 dex below the main sequence at
z = 1.2 for point sources with no extinction. Additionally, we make
the following cuts to our sample:
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These cuts leave 780 galaxies overall, 417 of which have Ha emis-
sion above the 3¢ level. All objects have at least one observation
blue-ward of rest-frame 2800 A, and 88% of objects have least one
detection in that wavelength range, so the NUV luminosity is well
constrained by observations.
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V—f Figure 2. Our sample in SFR-M, space. As in Figure 1, objects with Ho

emission are color-coded by the ratio of their Ho and UV SFRs and grey

“ ) J ! | ' ) l | points show objects with Ho non-detections. Points and squares show ob-
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Figure 4. The relationship between 1 and AMS for galaxies in our sam-
ple. Galaxies are color-coded by whether they are classified as star-forming
(blue) or quiescent (red) based on the UVJ diagram. The blue, red. and
purple lines show the binned relationship between 1 and AMS for UV.J-
star-forming, UVJ/-quiescent, and all objects with H detections respec-
tively. Arrows illustrate the 3o limits of galaxies without a significant Ha
detection. Although we do not include X-ray detected AGN in our pri-
mary sample, we show them here as stars to illustrate their distribution in
this space. Star-forming galaxies with AGN actually have similar 17 values
compared with galaxies without significant AGN, whereas quiescent galax-
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2016). Although there remains uncertainty with regard to the
specifics of AGB and post-AGB stellar evolution, models gener-
ally agree that evolved stars provide an ionizing flux of ~ 10*
photons /s/M:, (Cid Fernandes et al. 2011) independent of age.
Assuming Case-B recombination and a temperature of 10,000 K,
this corresponds to a Her luminosity per stellar mass of 1.37 x
102 erg s—! M. ~!. Given that evolved stellar-populations have
[Ni1)/Hex ratios close to 1 (Belfiore et al. 2016), we subtract
2% 1.37 x 10% x (M, /M) erg s~! (corresponding to a sSFR of
1.2 x 107" yr~!) from the Her luminosity to isolate the Hot emis-
sion associated with young stars.

Because of the low spectral resolution of the grism, the mea-
sured Ho flux contains emission from both Her and nearby [N11].
To correct for this contamination, we adopt a mass-dependent cor-
rection motivated by the mass-metallicity relation. The gas-phase
metallicity is estimated from the measured stellar mass assum-
ing the redshift-dependent mass-metallicity relation of Zahid et al.
(2014), and the metallicity is converted to a [N11]/Ha flux ratio fol-
lowing Kewley & Ellison (2008). The Hex flux reported in the 3D-
HST catalog is reduced by this ratio to determine the Ho flux. This
physically-motivated correction (typically around ~ 25% for our
sample) 1s somewhat larger than the 20% usually assumed (Wuyts
et al. 2011).
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