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ABSTRACT

We study the spatially resolved (sub-kpc) gas velocity dispersion (o)-star formation
rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological
simulations. We specifically focus on Milky Way mass disk galaxies at late times. In
agreement with observations, we find a relatively flat relationship, with o = 15 — 30
km/s in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ra-
tios of dense gas to neutral gas) and SFRs are correlated at constant o-. Similarly, lower
gas fractions (ratios of gas to stellar mass) are correlated with higher o at constant
SFR. The limits of the o-Zggr relation correspond to the onset of strong outflows. We
see evidence of “on-off” cycles of star formation in the simulations, corresponding to
feedback injection timescales of 10-100 Myr, where SFRs oscillate about equilibrium
SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well
with feedback-regulated and marginally stable gas disk (Toomre’s Q = 1) model pre-
dictions, and the data effectively rule out models assuming that gas turns into stars at
(low) constant efficiency (i.e., 1% per free-fall time). And although the simulation data
do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of
o, it appears to be strongly subdominant to stellar feedback in the simulated galaxy
disks.

Key words: galaxies: ISM, evolution, formation, kinematics and dynamics, star
formation, ISM: kinematics and dynamics



Table 1. Summary of z ~ 0 properties of the FIRE-2 Milky Way-
like galaxies used in this work

Name log( =) log( Mgas) Rﬁg,i/z Rgﬁ;cl/z k‘,;_c/s*
ml12b 10.8 10.3 2.7 9.4 266
m1l2c 10.7 10.3 3.4 8.6 232
m12f 10.8 10.4 4.0 11.6 248
m12i 10.7 10.3 2.9 9.8 232
ml2m 10.9 10.4 5.6 10.2 283
ml2r 10.2 10.0 4.7 9.9 156
ml2w 10.6 9.8 3.1 3.1 244

Note: all quantities measured within a 30 kpc cubic aperture.
*Circular velocities evaluated at Rgqs 1/2-
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Figure 2. Distributions of spatially resolved (750 pc pixel size) line-of-sight gas velocity dispersions (o) and SFR surface densities
for various gas and SFR tracers in the Milky Way-mass FIRE simulations for z < 0.1. Gas velocity dispersions are the mass-weighted
standard deviation of the line-of-sight velocities in gas, intentionally including inflow, outflow, non-circular galactic motions, etc. Data are
stacked together from all individual m12 galaxy simulations (see, Fig. A2). Filled contours indicate 95, 70, 50-percentile inclusion regions
for the simulation data. Velocity dispersions in neutral gas as a function of 10 Myr-averaged SFR are compared with observational data
from Zhou et al. (2017). Across ~ 3 dex in SFRs, gas velocity dispersions are nearly constant, with a rising lower envelope of dispersions
at a given SFR. The velocity dispersions for the cold and dense gas (T < 500 K and n > 1 cm™3, bottom row) are lower than for neutral
gas (atomic + molecular hydrogen, top row), indicating the dynamically colder state of the dense molecular component of the ISM.
Tracers with longer averaging timescales (100 Myr vs. 10 Myr, right and left columns, respectively) are able to trace the relation to lower
star formation rates and gas velocity dispersions, showing that there is a trend, but that it is very weak and only apparent over longer

averaging timescales.
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Figure 3. Distribution of o, (as Fig. 2) versus gas surface density (Zg;s), stellar surface density (Z«), and total surface density (Zgas+Zx)-
Unfilled contours indicate velocity dispersions and gas surface densities of the cold and dense (T < 500 K and n > 1 cm™) component,
with identical data inclusion percentages. We do not plot below below Zg,s = 0.1 Mg pc2 to ensure at least ~ 10 gas elements per pixel
for calculating o,. Left: As neutral gas surface densities exceed ~few Mg pc~2, the ISM transitions to a predominantly molecular form,
and velocity dispersions rise in the cold ISM component. Center: Largest scatter in velocity dispersions occurs for logX, ~ 1.5. Right:
Total surface density—velocity dispersion distribution is very similar to the stellar surface density—velocity distribution in neutral gas,
but for cold and dense gas there is a steeper rise in dispersions (and generally cold gas content) around total surface densities of ~10
Mo pc~2. Generally higher neutral gas surface densities have a lower scatter to high dispersions, whereas the cold and dense gas velocity
dispersions consistently rise with increasing gas and stellar surface densities.
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