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ABSTRACT

We study the correlation of orbital poles of the 11 classical satellite galaxies of the
Milky Way, comparing results from previous proper motions with the independent
data by Gaia DR2. Previous results on the degree of correlation and its significance
are confirmed by the new data. A majority of the satellites co-orbit along the Vast
Polar Structure, the plane (or disk) of satellite galaxies defined by their positions. The
orbital planes of eight satellites align to < 20° with a common direction, seven even
orbit in the same sense. Most also share similar specific angular momenta, though
their wide distribution on the sky does not support a recent group infall or satellites-
of-satellites origin. The orbital pole concentration has continuously increased as more
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Figure 2. Most-likely 3D velocity vectors of the 11 classical satellite galaxies (black arrows), projected onto a face-on view (left panel)
and an edge-on view (right panel) of the average orbital plane determined from the seven best-aligned orbital poles. The absolute
lengths of the vectors is arbitrary, but their relative lengths represent the relative velocities of the satellite galaxies. For both panels,
the measurement uncertainties in the two plotted velocity components (along the vertical and horizontal axes) are indicated by the grey
error bars at the base of the arrow heads. These use the same scale as the velocity vectors. The error bars thus illustrate how little
the vectors are allowed to move around within the uncertainties: The errors are generally much smaller than the arrow heads, except
for the most distant Milky Way satellites. The grey lines indicate the tangential direction at each satellite’s position. Most satellites
have highly tangentially biased velocites in the face-on view, but much more radial velocities in the edge-on view. With the exception
of Leol, Sextans, and Sagittarius, the classical satellites of the Milky Way thus move predominantly in a commeon plane. In the edge-on
view (right panel) the satellites are color-coded according to their line-of-sight velocity: red for receding, blue for approaching in this
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Figure 4. Comparison of the spherical standard distances Agy
of the k most-concentrated orbital poles with the expected distri-
bution from 2500 realizations of random wvelocity vectors drawn
from isotropy of the classical satellites (but fixed observed 3D
positions). The three observational proper motion samples are
shown as green lines. Contours on the model distribution indi-
cate regions containing 50, 90 and 99 per cent of all realizations.
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Figure 6. Same as Fig. 4, but comparing to the orbital pole directions that best align with the normal to the VPOSclass. The solid
magenta line gives the standard distances for the best-aligned poles, while the dashed line and the shaded regions are derived from 2500
realizations of mock-observing this while accounting for proper motion uncertainties of e, = 0.05mas yr ' (left panel) and €, = 0.1 masyr'

(right panel).



CpaBHeHne ¢ LCDM nocnegHen
MOOENW

We use the lllustris 'NG project, specifically the hydro-
dynamical simulation TNGI100-1 and its dark-matter-only
equivalent TNG100-1-Dark (Naiman et al. 2018; Springel
et al. 2018; Marinacci et al. 2018; Nelson et al. 2018; Pillepich
et al. 2018). The simulation has a box size of 75Mpc/h at
z =0 and a dark matter particle mass of mpy = 7.5% 10° Mg
(mpy = 8.9 x 10° Mg for TNG100-1-Dark). This provides
a good compromise between simulation volume (to ensure
a sufficiently large sample of potential host galaxies with
masses comparable to that of the Milky Way), and resolu-
tion (so that most of the selected hosts in the Milky Way
mass range are indeed surrounded by at least 11 subhalos).
The adopted cosmological parameters of [llustris TNG are
consistent with Planck Collaboration et al. (2016). We use

the publicly available redshift zero galaxy catalogs (Nelson
et al. 2019).

4.1 Selection and analysis of simulated satellite
systems

As potential Milky Way analogues, we first select all halos
with a total mass My of 0.5 to 2.0x10'* M, within a sphere
containing a mean density of 200 times the critical density of
the universe at z = (0. There are 2660 halos in this mass range
in TNGI100-1. Furthermore, to ensure a suflicient isolation,
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Figure 8. Same as Figs. 4 and 6, but comparing to the distribution of orbital pole directions derived from the hydrodynamical [llustris
TNGL00-1 cosmological simulation (left panel) and its dark matter only equivalent TNG100-1-Dark (right panel). For comparison, the
median Agy from the random welocities (black solid line in Fig. 4) is shown as a black dashed line.
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We present the constraints on the helium abundance in 12 X-ray luminous galaxy
clusters that have been mapped in their X-ray and Sunyaev-Zeldovich (SZ) signals
out to R, for the XMM-Newton Cluster Outskirts Project (X-COP). The unprece-
dented precision available for the estimate of Hj, allows us to investigate how much
the reconstructed X-ray and SZ signals are consistent with the expected ratio x
between helium and proton densities of 0.08-0.1. We find that a Hj around 70
km s~! Mpc~! is preferred from our measurements, with lower values of H, as
requested from the Planck collaboration (67 km s~! Mpe ™) requiring a 34% higher
value of x.
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cosmological parameters



Ecnun conoctaBuTb peHTreH n apdekt CroHsaeBa-
3ernbaoBu4ya, TO MOXHO OrpaHnTb KOMBUHaL Mo
obunua renma n noctoaHHon Xabbna

€ & nony(1 +4x) ~ ng(l + 4x)(1 + 2x), where the relation
n./n, = 1 + 2x holds. This approximation is reasonable
because the contribution from other metals with atomic num-
ber Z, > 3 raises the value of (1 + 4x)(1 + 2x) by about
3%.

Hence, for an observed X-ray flux f o« € R® fdi. n, scales
as A" [(1 + 4x)(1 4+ 2x)]™*, where d, is the luminosity dis-
tance that is proportional to the Hubble constant A~', and R is
the proper radius equal to the angular scale times the angular
diameter distance d, = d; /(1 + z)°.

The X-ray pressure is the product of the spectral measure-
ment of the gas temperature, T, by the electron density n,
estimated by the geometrical deprojection of the observed
surface brightness Sy « fnenp(l + 4x)dl, that implies the
following scaling:

0.5

R
nex ~ deproj(Sy )’ (ﬁ) ho3, (3)

The SZ pressure is obtained directly from the deprojection of
the Compton parameter y [ n T, dI:

(n.T.), ~ deproj(y) h. (4)

K=niHe)/n(k]

Under the assumption of spherical symmetry, and that the
gas density reconstructed from X-ray is not affected from
clumpiness (e.g. Nagai & Lau, 2011; Roncarelli et al., 2013)
that might bias high its value, we can write the ratio between
the two estimates of the pressure as

P.S‘E . (”E Te)SE - (1 +4JC){]-5 h{].ﬁ =1. ['5)

Py nxT. 1 +2x
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FIGURE 3 Result on the parameter n = P,/ Py oblained
from a best-fit of the pressure profiles for each X-COP object.
The coloured areas indicate the scatter (0.0838) in the distri-
bution and the error (0.0013) on the central position of the

joint-fit value ny_-op = 0.9624, used in the present analysis.
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3.2 | n+ H,: results on x

From the measurements of x obtained in the X-COP sample
and the adopted values of H (see subsection 2.1), we can use
Equation 5 to estimate 6 = 5> /h. We show the constraints on ¢
in Fig. 4 . Low values of x, lower than the one (angr) adopted
in the X-COP X-ray analysis seem to be preferred from high
values of the Hubble constant. In particular, for H ; p ¢ (74
km s~! Mpc™), x = 0.055+0.013, whereas for H ¢, (67.4
km s~! Mpc™!), x = 0.131 £ 0.008. These values should be
compared with a cosmic value of x,,, = 0.0869 and x =
0.0977 for the abundance table in angr.

Reversely, fixing x equal to the values from BBN, aspl,
angr, we measure H, = 70.9,71.0,69.9 km s~' Mpc™!,
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