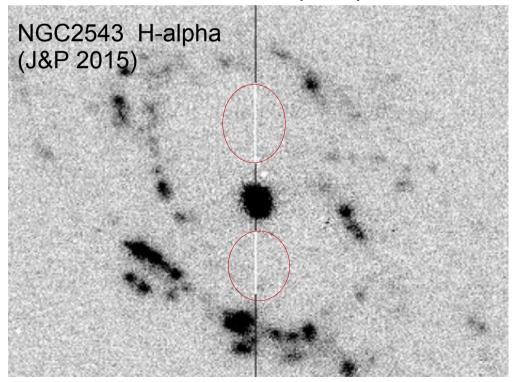
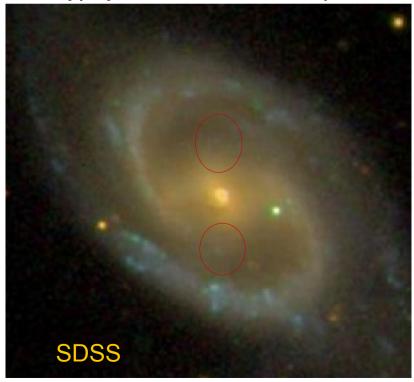
Diffuse LINER-type emission from extended disc regions of barred galaxies

S. M. Percival* & P. A. James

MNRAS accepted


arXiv: 2005.08985v


Astrophysics Research Institute, Liverpool John Moores University,

"Пустынные области"

....the region that is swept by the bar but not including the bar itself (the 'Star Formation Desert' or SFD region)....

- Хороший пример DIG со традиционным вопросом об источниках ионизации (shocks, p-AGB, hot WD, photon leakage..) И обзор в статье хорош!
- А как эти пустыни образовались: "зачистка" баром этой области от газа, или газ есть, но стабилен, например, из-за повышенной турбулентности от бара?

Семинар VOLGA 25/05/2020, Mouceeв

2.5m INT + Intermediate Dispersion Spectrograph, around Ha (0.5A/px, 0.44"/px)

Table 1. The galaxy sample and observational details for the new observations presented here. Position angles in italics are for observations along the axis of the bar.

Name	Class	Nucl(NED)	Vel km/s	Dist (Mpc)	Bar PA	Date obs	Int time	Slit PA	R _{MAX} (kpc)
NGC1924	SB(r)bc		2558	36.0	45	20150315	3×1200	315	2.3 34 галактики
NGC2326	SB(rs)b		5985	90.4	130	20150317	3×1200	220	8.7 1.15 VNVO 61 150 D 19 D15
NGC2339	SAB(rs)bc	AGN	2206	33.0	70	20150313	3×1200	340	^{8.7} +15 уже было в J&P15
UGC3973	SBb	Sy1.2	6652	100.2	70	20150314	3×1200	340	4.5 = 48
UGC4042	(R)SB(r)b		8292	122.8	150	20150315	3×1200	60	6.2
NGC2487	SB(r)c		4841	71.9	45	20150314	3×1200	43,315	6.8 Щель вдоль мало оси
NGC2545	(R)SB(r)ab	LINER	3385	50.6	170	20150317	3×1200	260	
NGC2523	SB(r)bc		3471	55.3	120	20150313	3×1200	60	$_{7.1}^{1.7}$ баров, а по возможнос
NGC2604	SB(rs)cd	WR,HII,Sbrst	2078	32.7	50	20150316	$(1)3 \times 1200$	230,320	2.8 — и по большой
NGC2746	SB(rs)a	AGN?	7065	105.6	40	20150315	3×1200	310	8.1 — NI 110 0011BELON
NGC3049	SB(rs)ab	HII,Sbrst	1455	24.2	35	20150316	3×1200	305	3.5
NGC3185	(R)SB(r)a	Sy2	1217	22.9	120	20150317	3×800	30,285,300,315	3.5
NGC3346	SB(rs)cd		1274	22.4	90	20150313	3×1200	0	1.2
UGC5892	SBb		8107	119.7	90	20150315	3×1200	180	3.3
NGC3374	SBc		7468	112.7	15	20150314	3×1200	285	4.1
NGC3485	SB(r)b:	AGN	1436	25.7	40	20150313	3×1200	130	1.8
NGC3507	SB(s)b	LINER	979	15.8	120	20150316	3×1200	30	2.0
NGC3729	SB(r)a pec		1060	20.2	20	20150315	3×1200	290	1.4
NGC3963	SAB(rs)bc		3188	51.5	130	20150314	3×1200	220	4.3
NGC4123	SB(r)c	WR,HII,Sbrst	1327	19.3	105	20150316	3×1200	15	2.5
NGC4416	SB(rs)cd	HII,Sbrst	1390	14.1	5	20150317	1×1200	95	0.6
NGC4619	SB(r)b	Sy1	6927	105.2	10	20150313	3×1200	100	3.2
NGC4779	SB(rs)bc	HII,Sbrst	2831	44.6	10	20150316	3×1200	100	3.9
NGC4904	SB(s)cd	HII, WR, Sbrst	1180	20.8	135	20150314	$3(1) \times 1200$	45,315	2.3
NGC4999	SB(r)b		5647	84.7	60	20150315	3×1200	330	8.5
NGC5164	SBb		7218	110.5	25	20150317	3×1200	115	3.8
NGC5350	SB(r)b	Sbrst	2321	39.3	110	20150313	3×1200	20	3.2
NGC5375	SB(r)ab		2386	39.9	170	20150316	3×1200	260	3.9
NGC5618	SB(rs)c		7132	106.7	5	20150317	3×1200	95	3.6
IC1010	SB(r)b pec		7702	115.3	170	20150315	3×1200	80	6.7
NGC5735	SB(rs)bc		3742	59.3	0	20150314	$(1)3 \times 1200$	0,270	3.3
C1067	SB(s)b		1577	27.5	140	20150313	3×1200	45	1.7
NGC5970	SB(r)c	HII,LINER	1957	28.4	80	20150315	$(1,1,1)3\times1200$	65,80,95,350	1.8
NGC6004	SAB(rs)bc		3826	60.3	10	20150317	3×1200	100	2.3

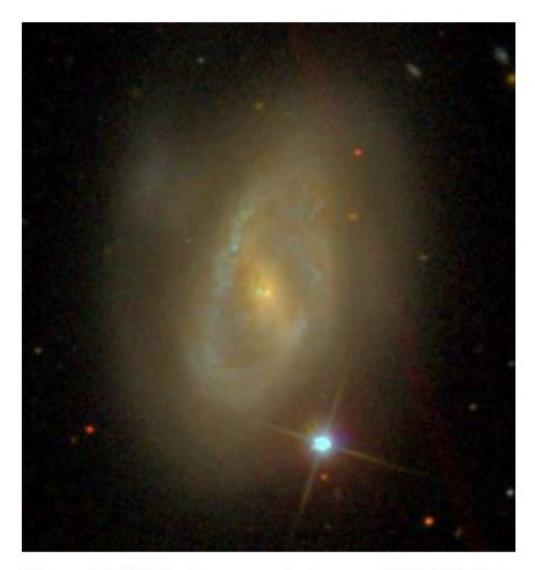
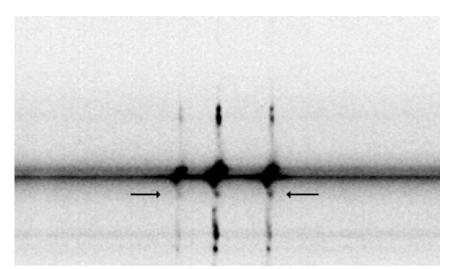
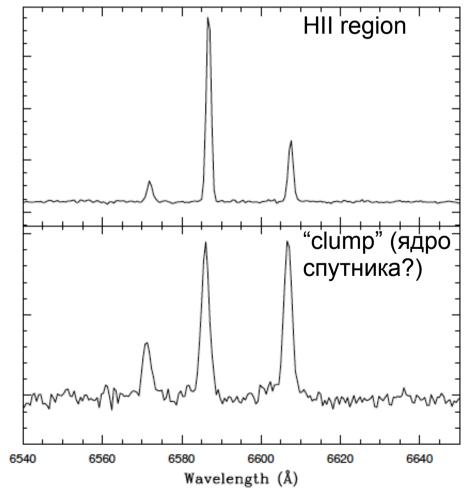
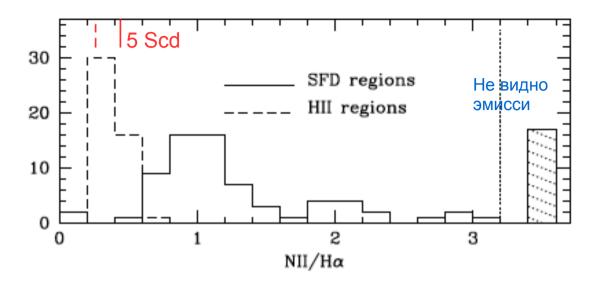
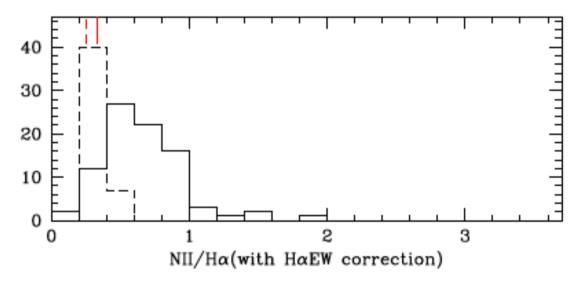





Figure A1. SDSS colour composite image on NGC 3729. Note the low surface brightness component to the north-east, which may indicate an ongoing minor merger.


Appendix: N 3729 Minor merging? Семинар VOLGA 25/05/2020, Моисеев

Коррекция за абсорбцию - итеративная процедура одновременного фитинга эмиссии и абсорбции, с учетом EW для характерного возраста, Бвльмеровский декремент (если есть Hβ) - James & Percival (2016).

Даже после коррекции – есть явная разница между баром (HII в кольцах и не только) и "пустыней":

[NII]/Ha:

87 SFD regions: 0.648+-0.033 53 HI regions: 0.347+-0.008

- Нет бимодальности!
- p-AGB [NII]/Ha~0.63 (Byler + 19)! (for solar metallicity)

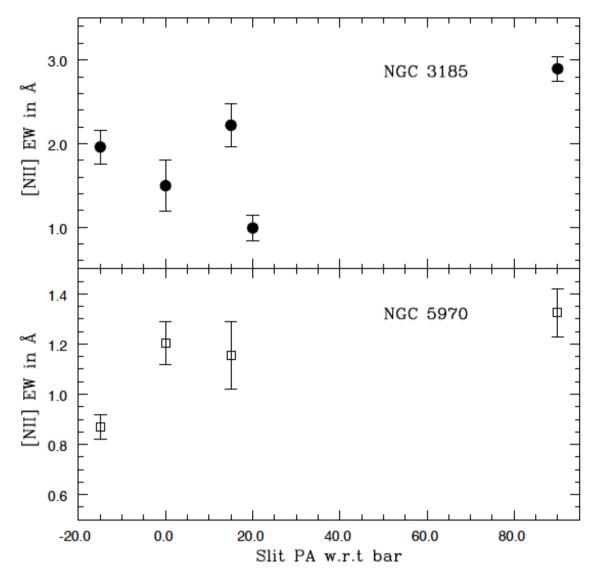


Figure 3. [NII] equivalent widths for multiple position angles relative to the bar axis. Solid circles show values for NGC 3185, and open squares the ratios for NGC 5970. Neither galaxy shows clear evidence for a systematic trend in spectral properties as a function of position angle.

Семинар VOLGA 25/05/2020, Mouceeв

Галактики, где было несколько разрезов – нет указаний на ударное возбуждение в баре?

От меня – просто не попали на кромки?

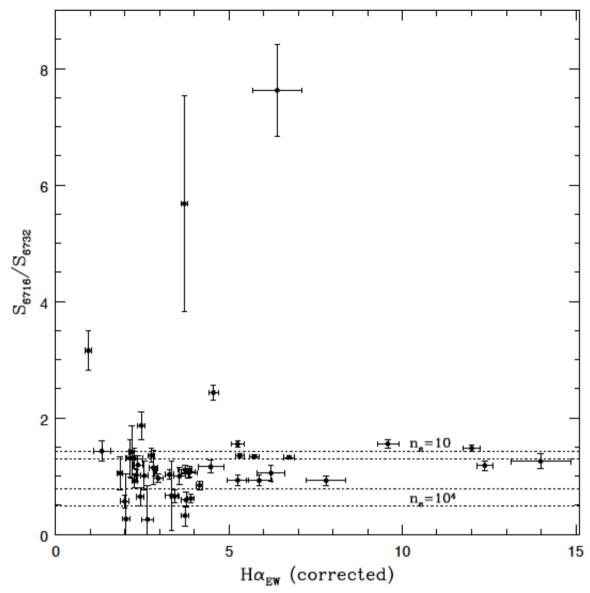


Figure 5. The emission line ratio [SII]6716Å/[SII]6732Å as a function of H α equivalent width. The dotted horizontal lines correspond to the predicted ratios for electron densities of 10, 100, 1000 and $10,000 \,\mathrm{cm}^{-3}$ from top to bottom, respectively.

At the referee's suggestion, we have investigated whether we can derive useful constraints on ambient gas densities from our spectroscopic observations.

Разумный разброс, без явных трендов...

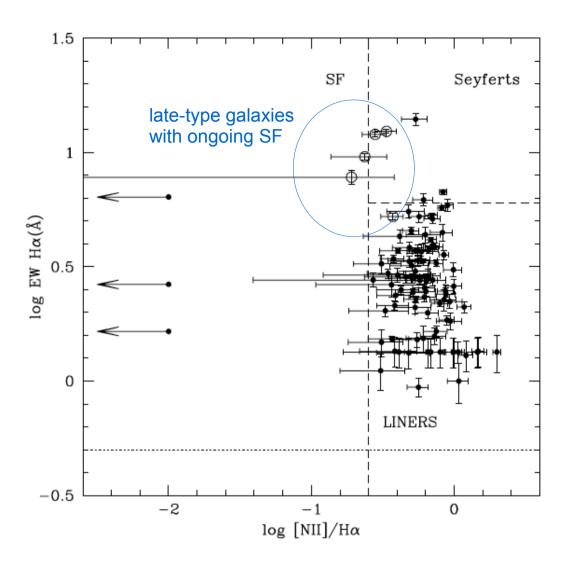


Figure 2. A 'WHAN' diagram (Cid Fernandes et al. 2011) showing H α equivalent width as a function of [NII]/H α line ratio, where the dashed lines mark the boundaries separating emission powered by star formation, Seyfert/AGN activity and LINER-type emission. The dotted line corresponds to an H α equivalent width of 0.5 Å, the upper limit proposed in the literature for emission from old populations in early-type galaxies.

Семинар VOLGA 25/05/2020, Mouceeв

Extreme Blue Horizontal Branch (EHB) плохо объясняют отсутствие бимодальности в параметрах, а также сложно ожидать "UV-upturn", чаще встречается в ETG, с высоким [a/Fe]..

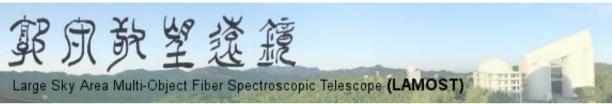
Но модели "обычной" ионизации вокруг p-AGB предсказывают EW=0.2-2.5 A (Ig<0.4) Здесь же - часто выше, видимо, достаточно много газа.

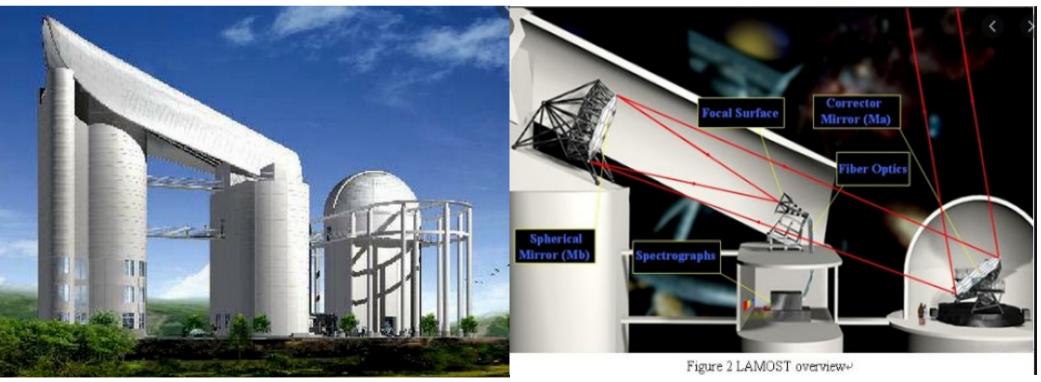
При этом есть и модели и наблюдения, показывающие, что в "пустынных" областях плотность газа уменьшается (the bar appears to be funnelling gas from the entire region surrounding the bar into the nucleus)

Тем не менее, какой-то диффузный газ остается.

В предыдущих работах – указания, что согласуется с кинематикой звезд, т.е. лежит в диске...

Выводы:


- SFD ("опустынивание") подтверждено и изучено на самой большой пока выборке – 48 галактик
- Здесь видна диффузная эмиссия, [NII]/Ha~0.65, Ews=1.5-4 A
- Однородное распределение по наблюдаемым параметрам + согласие с моделями указывают на ионизацию p-AGB окружающего газа с солнечной металличностью
- Плотность газа всё же выше, чем в типичных "пассивных галактиках красной последовательности"


Хорошая, вдумчивая работа, приятная в чтении, Мало картинок, много рассуждений и полезных ссылок о DIG Надо иметь в виду при анализе IFU данных в барах!

LAMOST Medium-Resolution Spectroscopic Survey (LAMOST-MRS): Scientif **c** goals and survey plan

Chao Liu^{1,2}, Jianning Fu³, Jianrong Shi^{4,2}, Hong Wu⁴, Zhanwen Han⁵, Li Chen^{6,2}, Subo Dong^{7,8}, Yongheng Zhao^{4,2}, Jian-Jun Chen⁴, Haotong Zhang⁴, Zhong-Rui Bai⁴, Xuefei Chen⁵, Wenyuan Cui⁹, Bing Du⁴, Chih-Hao Hsia¹⁰, Deng-Kai Jiang⁵, Jinliang Hou^{6,2}, Wen Hou⁴, Haining Li⁴, Jiao Li^{5,1}, Lifang Li⁵, Jiaming Liu⁴, Jifeng Liu^{4,2}, A-Li Luo^{4,2}, Juan-Juan Ren¹, Hai-Jun Tian¹¹, Hao Tian¹, Jia-Xin Wang³, Chao-Jian Wu⁴, Ji-Wei Xie^{12,13}, Hong-Liang Yan^{4,2}, Fan Yang⁴, Jincheng Yu⁶, Bo Zhang^{3,4}, Huawei Zhang^{7,8}, Li-Yun Zhang¹⁴, Wei Zhang⁴, Gang Zhao⁴, Jing Zhong⁶, Weikai Zong³ and Fang Zuo^{4,2}

arXiv: 2005.08985v Submitted to RA&A

5.7х4 м

http://www.lamost.org/public

Figure 2 shows the fiber positioning units

~10 M spectra in low-resolution R~1800

16 spectrographs has been upgraded in 2017: => R~7500 (переключаются за день): 4950-5350A, 6300-6800A => точность скоростей ~1 км/с Обилия ~20 элементов

2018-2023: 2 миллиона звездных спектров ярче G=15 mag, 60 эпох для 200 000 звезд

- Binarity/Multiplicity,
- Stellar pulsation,
- Star formation,
- Emission nebulae,
- Galactic archaeology,
- Host stars of exoplanets,
- Open clusters.

HII **PNe SNRs**

HH