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Figure 1. Optical images of the studied sample of 50 galaxies and
NGC 1961. The images are taken from Sloan Digital Sky Survey
(SDSS, data release T) with the exception of NGC 1961, which is
from Digitized Sky Survey 2. The SDSS images are compositions
of g, 7, and 7 (Smith et al. 2002) imaging data. The solid line in
the lower-left corner of every image represents a scale of 10 kpe.

Figure 2. lmages of X-ray atmospheres of S0 galaxies in our
sample and NGC 1961, all extracted in the energy range 0.3 -
2.0 keV. The images are displayed on log-scale in order to visualize
the full extent of the hot atmospheres, while the most prominent
point sources have been removed. The solid line in the lower-left

corner of every image represents a scale of 10 kpe.
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object Ly B-V  log Pudio Lpan log My, log My, SFR

NGC 10°Lg, mag WHz! 10* erg 57! Mg M Mg yr~!

3607 3.70 0.93 20.63 7.8+6.2 85.42 < 6.53 0.420

3665 3.37 0.93 22.04 45.1 £9.9 3.91 = 7.03 0.109

4382 5.86 0.89 < 19.79 0.3+£5.5 < 7.39 < 6.59 0.002

4459 1.45 0.97 < 19.63 T.1+2.9 8.24 < 6.53 0.071

4526 2.42 0.98 20.61 17.1 £4.4 8.59 7.15 0.028

5353 3.56 1.03 21.62 2.3+£6.7 < 7.44 < 7.07 0.095

1961 2291 0.86 22.82 3T.8+3.1 10.39 10.67 9.24

NGC EY Ey PAy [deg] PA, [deg] B ro [pe]

3607 0144 0,011 013008 119.7+£2.3  1248+7.6  0.440 £ 0.007 352
3665  0.175+0.005  0.22 £0.01 290+ 1.0 309+£2.0  0.643+0008 14243
4382 0.110+£0.006  0.25+0.07 298+1.7 123+ 11.0  0.349 + 0.004 31«2
4459  0.060 £0.016 021 +0.03 1341+7.8 105.3+19 0.79 + 0.06 58+4
4526 0218 £0.005 076005 116807 113.7+£1.2 1.00 £ 0.02 1290+ 3
0353 0253 +£0.004 048004 1366206 1404+£49 0.86 + 0.01 15743

1961 0.161 +0.009 0.330 100.8 + 1.8 92.0+ 2.0 0.46 + 0.01 63+3

'l'o determine the Hattening of the atmospheres, we used

object ULX ] ke Tx ITx fx Rinax the CIAO (version 4.12, Fruscione et al. 2006) fitting tool
NGC 10" erg s key kay. 10° My, kpe Sherpa (Refsdal et al. 2009) to fit each galaxy with a 2D -
3607 1.74 0.41 |+::th;3 g3 |.53+H-l]1; 1.8 model (Cavaliere & Fusco-Femiano 1976, 1978) of the form
= 0006 007 1
3665 2.30 (i312+0.008 - 1.09%0-07 191 "
0.025 0.017 0.10 : el Il
4382 7.97 0.31670925 00120017 5064010 36 1(r) = I, [1 .. ] i (1)
= : +0.041 +0.02 :
4459 0.31 0.39070:041 e 0.12:02 93 e
where
- : 0.013 0.03 -
4526 0.71 (]AZH)LJ_U]Q - {LISiU_m 8.5
=g 1 0.020 {.042 003 “ Lrd
5353 4.21 ()‘65”1]_(12(] {),22511_0% {},49:]_03 11.7 . (1- (“ijfz " 'ﬁz
1081 0.030 0.082 0.49 = s —_—— 2
1961 4.79 0.208*0030  0.202*0-082 60104 25.8 2(—exP (2)




TemnepaTtypa HUXe, 4YeM Y
ANNNNTUYECKUX TOU Xe MaccChbl

Sl NGC 3607 || NGC 3665 || NG!: 4382
0.6 3 F i
0.4 I . ' - =4y |
: =l i -
"_f'_" s I-l1_._
D-Z-Illllﬂ 1 1 1l 11 11 -||||||I 1 gl 11 11 -||||||I 1 Illlllli
. NGC 4459 || NGC 4526 _—|— NGC 5353
=  AF
g osf ' Nl
* paf] —s L L
. it -L
T =t
1 10 N T— 1 10
o8} 3
06}
04t i
o £ - ,
1 10
r [kpc]

Figure 3. Radial, azimuthally averaged temperature profiles de-
rived from projected (grey) and deprojected (blue) spectra with
metallicity fixed at 0.5 Zs. For clarity, dark blue points represent
S0 galaxies in our sample, while the profile of the spiral galaxy
NGC 1961 is plotted in light blue. The effective radius (see Table
1) is represented by the black dotted line in each panel.
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Figure 5. Entropy profiles of the rotationally supported galaxies
in this study (solid lines), NGC 7049, an 50 from previous work
(Juranova et al. 2019, black dotted line) and a sample elliptical
galaxies distinguished by the extent of cool gas of Lakhchaura
et al. (2018). For the ellipticals, lines signify median profiles and
swrrounding shaded regions the median absolute deviations.

3.2.2 Entropy

A key physical quantity describing the thermodynamic
states of hot galactic atmospheres is entropy. We adopt here
its definition customary in this field and refer to the entropy
index K defined below as the entropy hereafter,

K = kgTnZ 2>, (4)

This definition relates to the thermodynamic entropy per
particle, s, of non-interacting monoatomic particles as As =
3/2kgIn K. A gravitationally stratified atmosphere in hy-
drostatic equilibrium should have an entropy profile rising
monotonically with radius, while a flat or decreasing trend
would indicate a convectively unstable environment.

'NCTaa aguTaumas

profile given by K o r'-!, which is usually not observed

due to the heating by the AGN and supernovae that cen-

trally increase the gas entropy, flattening the profiles to
K o rU97 (Panagoulia et al. 2014; Babyk et al. 2018). To
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Figure 7. Ratio of cooling time to free-fall time for all studied Figure 8. The C-ratio (see section 3.3) of S0 galaxies possessing
galaxies. The value g1/ tg = 10 (see section 3.3) is visualised as a cold gas. The grey region represents the lo confidence region

(from hydrodynamical simulations; Gasparl et al. 2018) where
conditions for the development of multiphase condensations are

T,

dashed grey line.

expected to be favourable.
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2.1 The SAMI survey

The observational data products used in this work were
created by the SAMI Galaxy Survey (Bryant et al. 2015).
The Sydney-AAQ Multi-object Integral field spectrograph
(SAMI; Croom et al. 2012) is mounted at the prime focus
of the 3.9m the Anglo-Australian Telescope, which provides
a 1 degree diameter field of view. SAMI uses 13 fused fibre
bundles (Hexabundles; Bland-Hawthorn et al. 2011; Bryant
et al. 2014) with a high (75 percent) fill factor. Each bun-
dle contains 61 fibres of 1.6 arcsec diameter resulting in
each hexabundle having a diameter of 15 arcsec. The hex-
abundles, as well as 26 sky fibres, are plugged into pre-
drilled plates using magnetic connectors. SAMI fibres are
fed to the double-beam AAOmega spectrograph (Sharp et
al. 2006). For the SAMI Galaxy Survey its 570V grating
was used with the blue arm (3700-5700A), giving a resolu-
tion of R=1730 (o = 74km/s), and the R1000 grating with
the red arm (6250-7350A) giving a resolution of R=4500
(o0 = 29km/s) (van de Sande et al. 2017). At least six point-
ings on each galaxy are weighted and combined to produce
data cubes with a pixel scale of 0.5 x 0.5 arcseconds (Allen
et al. 2015; Sharp et al. 2015). Here we use data products
released in Data Release 2 (Scott et al. 2018).
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Figure 3. Distributions of our final S0 sample over Sérsic index vs ellipticity (a), vs stellar mass (b) and the effective radii
mass (c). Points are shaded according to their v/o value, with bluer points showing more rotationally-supported S0s. A gradie
is evident over each of these parameter spaces, showing that higher rotational support corresponds to lower Sérsic indexes ¢
effective radii. The black diamond corresponds to the locations of the Diaz et al. (2018) fiducial model, which has a stellar v/«

around 0.2.
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Figure 4. Distribution of v/ values (a) for the GAMA (purple)
and cluster (orange) regions, and the average stellar v/o of S0s
in the field, low mass groups (below 103 M, high mass groups
(above 10"*My) and the cluster regions (b).
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Figure 9. Stellar (blue) and gas (orange) kinematic profiles for S0s with v/o below 0.5 (top row) and above 0.5 (bottom row). Solid
lines are the velocities, dotted lines are the velocity dispersions. The pressure-dominated S0s feature gas rotation velocities significantly
higher (at least two times faster at 1.5 Re) than the stellar components, while the rotation-dominated S0s feature gas velocities in line
with their stellar components.
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and fast rotators. Slow rotators are defined to be those galax-
ies which fall within the region below Ag, = 0.08 +¢/4 (Cap-
pellari 2016). Recent work has suggested that slow and fast
rotators may have different evolutionary pathways, with the
slow rotators resulting from merger activity and the fast ro-
tators following a more passive evolution (Penoyre, et al
2017). However, the majority of early-type galaxies which
fall within the slow-rotator class are ellipticals; for example
in the work of Emsellem et al. (2007), while 10 out of 25
ellipticals are classed as slow rotators, only two out of 22
S0s are classed as slow rotators while the remaining were
classed as fast rotators. Here we found the same behaviour
for our SO sample; only 12 out of 219 S0s lie within the
slow-rotator region. This highlights that the spread in kine-
matics of SOs we find here lies in a different region of the
ellipticity vs Ag, parameter space. Therefore we conclude
that the spread in v/o we observe is not caused by subpop-
ulations corresponding to the slow and fast rotators, but is
caused by a range of processes intrinsic within the S0 class.



