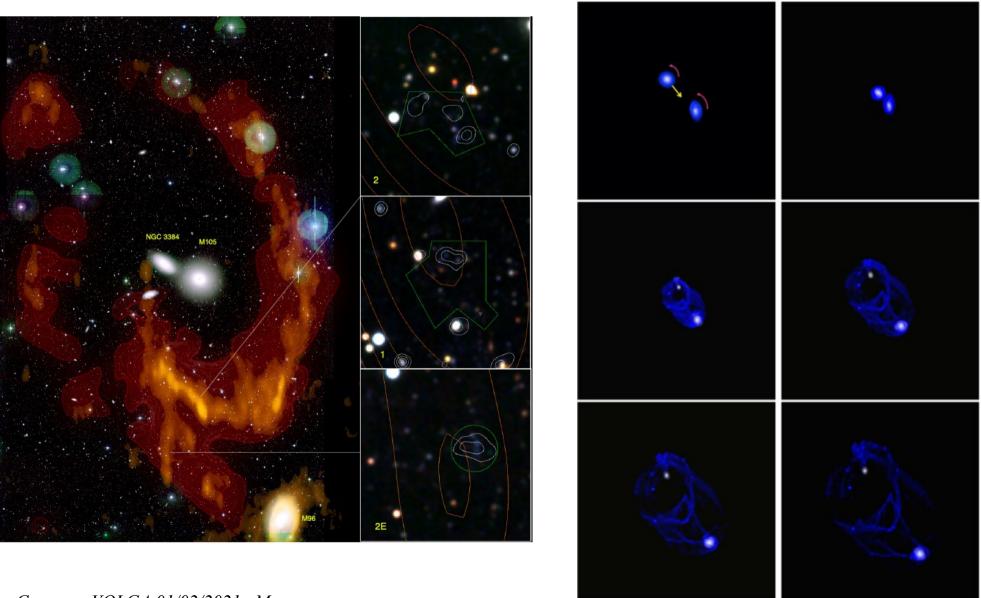

Heavy elements unveil the non primordial origin of the giant HI ring in Leo

Edvige Corbelli,¹ Giovanni Cresci,¹ Filippo Mannucci,¹ David Thilker,² and Giacomo Venturi^{3,1} ArXiv:2101.10348 ApJ L, accepted


Leo I ring in M96 group: D>200 kpc, M(HI)~2x10^9 Mo

Лобовое столкновение и пролет M96 через NGC 3384 ?

Leo Michel-Dansac + 2010

Aresibo+ WSRT. CFHT, Galex – есть оптические и УФ клампы

Семинар VOLGA 01/02/2021, Mouceeв

Первичный или переработанный газ в кольце?

ЗА первичную природу газа:

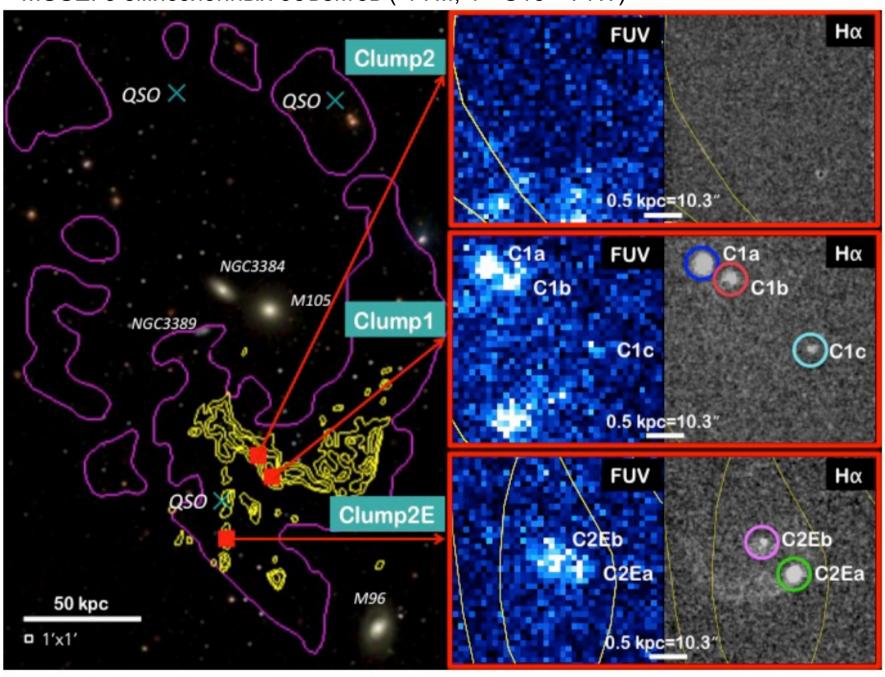
- GALEX-UV + optical colors
- 3 квазара "на просвет":

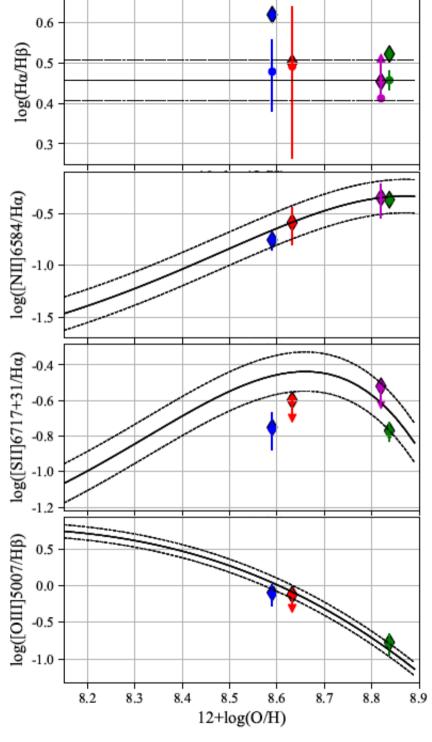
spectra of 3 background QSOs, 2 of which have sightlines close or within low HI column density contours of the ring (Rosenberg et al. 2014). The low metallicity, estimated between 2% - 16% solar for Si/H, C/H and N/H, has however large uncertainties due to ionisation corrections. Confusion with emission from the Milky

ЗА обогащенный газ:

- столкновительная модель, т.е. этот газ уже был в диске
- эмиссия пыли на 8 микронах в одном из клампов (Bot+ 2009)

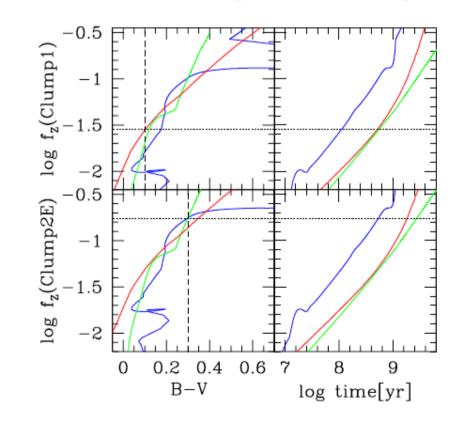
MUSE: 5 эмиссионных объектов (4 HII, 1 - C1c – PN?)




Table 2. Integrated emission for Gaussian fits to nebular lines with $R_{ap}=1.2''$. Upper limits are 3σ values, flux units are 10^{-17} erg s⁻¹cm⁻².

Source	$H\beta$	[OIII]5007	[NII]6548	$H\alpha$	[NII]6583	[SII]6716/	[SII]6731	$\mathrm{FWHM}_{b,r}[\mathring{\mathrm{A}}]$
C1a	1.89 ± 0.37	$1.53{\pm}0.38$	< 0.46	7.89 ± 0.29	1.39 ± 0.25	$0.86 \pm\ 0.21$	$0.54 \pm\ 0.21$	2.5,2.5
C ₁ b	$1.00 {\pm} 0.37$	< 0.76	< 0.49	$3.17{\pm}0.23$	$0.82 {\pm} 0.31$	< 0.40	< 0.40	1.9,2.2
C2Ea	7.97 ± 0.41	$1.34 {\pm} 0.37$	$3.88 {\pm} 0.31$	$26.57 {\pm} 0.35$	11.39 ± 0.36	2.71 ± 0.33	$1.81 {\pm}~0.36$	2.8,2.4
C2Eb	< 0.79	< 0.79	< 0.76	$2.25{\pm}0.35$	$1.01 {\pm}0.32$	< 0.34	< 0.34	,2.1

F(Ha)= 2-27 E-17 erg/s/cm2, strong-line calibration in Curti et al. (2020)


Table 1. HII region coordinates, chemical abundance and extinction. Extinction corrected total H α luminosities are computed using circular apertures with radius R_{ap}^{max} .

Source	RA	DEC	V_{hel}	12+log(O/H)	A_V	Z/Z_{\odot}	R_{ap}^{max}	$A_{H\alpha}^{Rmax}$	$\log L_{H\alpha}$
			${ m km~s^{-1}}$		mag		arcsec	mag	${ m erg~s}^{-1}$
C1a	10:47:47.93	12:11:31.9	994±2	$8.59^{+0.04}_{-0.04}$	$1.02^{+0.60}_{-0.60}$	0.79	5.0	0.40	36.62
C1b	10:47:47.44	12:11:27.6	1003 ± 3	$8.63^{+0.28}_{-0.04}$	$0.06^{+1.59}_{-0.06}$	0.87	3.0		35.94
C2Ea	10:48:13.52	12:02:24.3	940 ± 3	$8.84^{+0.01}_{-0.01}$	$0.47^{+0.31}_{-0.35}$	1.41	3.4	0.61	36.91
C2Eb	10:48:14.08	12:02:32.5	$937{\pm}21$	$8.82^{+0.09}_{-0.11}$		1.35	3.0		35.85

Оценка верхнего предела доли металлов, сформировавшихся в кольце, изсхдя из Всветимости и металличности. use the instantaneous burst or continuous star formation models of Starburst99 in addition to population synthesis models of Bruzual & Charlot (2003) for an initial burst with an exponential decay (= 1 Gyr).

$$f_Z^{max} = \frac{Z}{Z_{obs}} = \frac{y_Z}{Z_{obs}} \ln(\frac{\Sigma_{g0}}{\Sigma_g}) = \frac{y_Z}{Z_{obs}} \ln(1 + \frac{\Sigma_*}{\Sigma_g})$$

Семинир V OLOA 01/02/2021, Moucees

Вывод:

Даже самый верхний предел этой доли оказывается <17 %:

For Clump1 a starburst 500 Myrs ago that slowly decays with time gives the highest possible local metal production with $f_Z^{max} = 3\%$ and $\Sigma_* = 0.01 \ M_{\odot} \ \mathrm{pc^{-2}}$. For Clump2E both an instantaneous burst 500 Myrs ago or a continuous star formation since 2 Gyr ago gives the maximum value of $f_Z^{max} = 17\%$ with $\Sigma_* = 0.04 \ M_{\odot} \ \mathrm{pc^{-2}}$.

=> кольцо сформировалось из газа, имевшего металличность на уровне 0.5Zo, т.е. он уже был в галактиках

Проблема с "просвечивающими квазарами" будет решена, если:

- реальная плотность HI там меньше, чем оценивалась с грубым beam
- возможно, наблюдали смесь обогащенного и низкометалличного газа группы

Weida Hu^{1,2}, Junxian Wang^{1,2}, Leopoldo Infante^{3,6,9}, James E. Rhoads⁴, Zhen-Ya Zheng⁵, Huan Yang³, Sangeeta Malhotra⁴, L. Felipe Barrientos⁶, Chunyan Jiang⁵, Jorge González-López^{3,9}, Gonzalo Prieto⁶, Lucia A. Perez⁷, Pascale Hibon⁸, Gaspar Galaz⁶, Alicia Coughlin⁷, Santosh Harish⁷, Xu Kong^{1,2}, Wenyong Kang^{1,2}, Ali Ahmad Khostovan⁴, John Pharo⁷, Francisco Valdes¹⁰, Isak Wold⁴, Alistair R. Walker¹¹, XianZhong Zheng¹²

Lyman Alpha Galaxies in the Epoch of Reionization (LAGER), utilizing the Dark Energy Camera (DECam, with a field of view of 3 deg2) on CTIO Blanco 4m telescope and a customized narrowband filter DECam-NB964

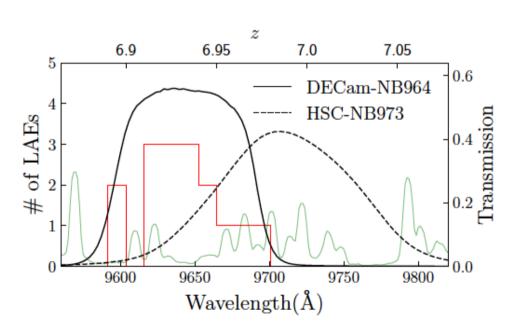
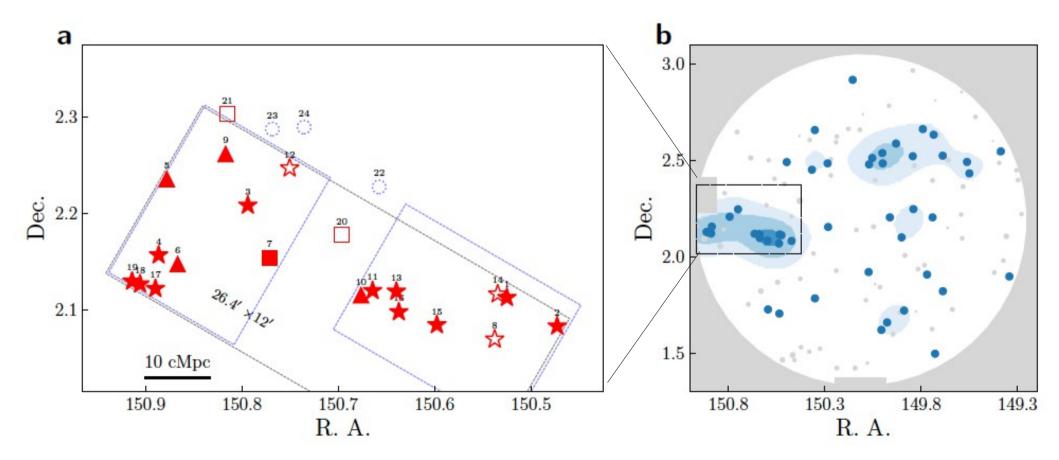
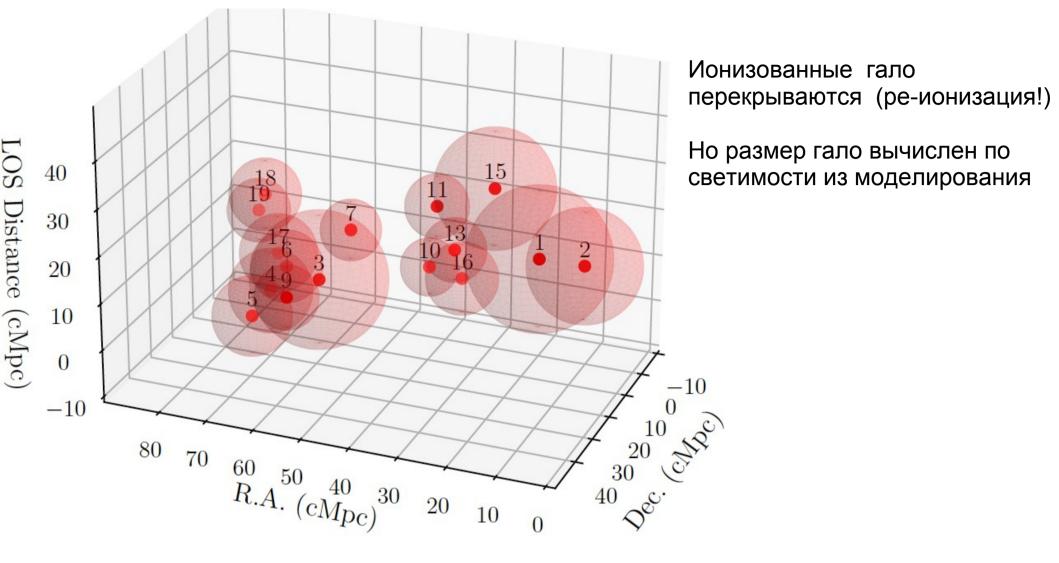


Figure 1 | Redshift distribution of spectroscopically confirmed LAEs in LAGER-z7OD1. The red histogram shows the redshift distribution of 16 spec-

Фотометрический глубокий обзор с последующей спектроскопией на Магелланах


See Methods for more details. In the LAGER COSMOS field, we obtained 47.25 hours narrowband exposure reaching a 5σ detection limit of 25.2 magnitude and a Ly α sensitivity of $10^{42.65}$ erg s⁻¹. Combining the deep narrowband image with the ultra deep broadband images from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP), we uniformly selected $49 z \sim 7 \text{ LAEs}^{13}$. See Methods and papers 11×13


LAGER-z7OD1 – область высокой плотности источников на z=6.90-6.98:

66 x 30 x26 cMpc³

Overdensity=5, Спектрально подтвердили 16 LAEs

Звездочки – скопление, закрашенные – есть спектры

Два сливающихся протоскопления, оценили, что должны слиться к z~2 Оценка "сегодняшней массы" - 3.7*10^15 Мо (примерно две Coma)