Обзор ArXiv/astro-ph, 8-12 марта 2021 года

От Сильченко О.К.

ArXiv: 2103.06882

On the origin of surprisingly cold gas discs in galaxies at high redshift

Michael Kretschmer, 1 * Avishai Dekel, 2 Romain Teyssier 1

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We address the puzzling observational indications for very "cold" galactic discs at redshifts $z \gtrsim 3$, an epoch when discs are expected to be highly perturbed. Using a high-resolution cosmological zoom-in simulation, we identify such a cold disc at $z \sim 3.5$, with a rotation velocity to velocity dispersion ratio of $v_{\phi}/\sigma_r \simeq 5$ for the total gas. It forms as a result of a period of intense accretion of co-planar, co-rotating gas via cold cosmic-web streams. This thin disc survives for ~ 5 orbital periods, after which it is disrupted by mergers and counter-rotating streams, longer but consistent with our estimate that a galaxy of this mass $(M_{\star} \sim 10^{10} \rm M_{\odot})$ typically survives merger-driven spin flips for $\sim 2-3$ orbital periods. We find that v_{ϕ}/σ_r is highly sensitive to the tracer used to perform the kinematic analysis. While it is $v_{\phi}/\sigma_r \simeq 3.5$ for atomic HI gas, it is $v_{\phi}/\sigma_r \simeq 8$ for molecular CO and H₂. This reflects the confinement of molecular gas to cold, dense clouds that reside near the disc mid-plane, while the atomic gas is spread into a turbulent and more extended thicker disc.

¹Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

²Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Есть такая галактика на z=3.5!

Причем молекулярный газ холоднее, чем атомарный

Figure 2. Velocities measured at z=3.5 using the three different tracers HI, H₂ and CO. Shown is the circular velocity V_c together with the rotational velocity v_ϕ and the radial velocity dispersion σ_r . We see that the obtained v_ϕ from H₂ and CO is larger than the one obtained from HI and closer to V_c . Furthermore, the dispersion is smaller and remains mostly constant with a value around $\sigma_r \sim 30 \,\mathrm{km \, s^{-1}}$ for H₂ and CO. For HI, the dispersion increases with radius at r>2 kpc, where there is little H₂, and no CO. The relative difference in the obtained values for σ_r is larger than those for v_ϕ . The arrows mark the half-mass radius r_e for each component.

И это короткая стадия: 5 оборотов, или 410 млн лет

