MUSE-ALMA Halos VI: Coupling Atomic, Ionised & Molecular Gas Kinematics of Galaxies

Roland Szakacs,¹* Céline Péroux,^{1,2} Martin Zwaan,¹ Aleksandra Hamanowicz,³ ArXiv:2105.07280 Anne Klitsch,⁴ Alejandra Y. Fresco,⁵ Ramona Augustin,³ Andrew Biggs,¹ WNRAS Accepted Varsha Kulkarni,⁶ Hadi Rahmani^{2,7}

Хорошее введение.

Что поддерживает 3O, соотношение ионизованной/нейтральной/молекулярной ISM

Определение: "the circumgalactic medium (CGM), which is loosely defined as the gas surrounding galaxies outside of the disk or ISM, but within the virial radius (Tumlinson+17)"

Наблюдения:

5 полей с квазарами, с сильными абсорбциями HI на z=0.4 + один z~0.75

VLT/MUSE: 1-4 yaca (Hamanowicz et al. 2020)

ALMA

HST: FOC/COS, WFPC2, WFPC3

Аккуратное отношение к систематическим ошибкам:

 8.98 ± 0.02 , but include the lower metallicity in the error calculation and compute $\alpha_{CO}=2.48^{+2.50}_{-0.08}~M_{\odot}(K~km/s~pc)^{-1}$. The molecular

but take into account the value derived by the Tully-Fisher relation and by the MZR using the (Muzahid et al. 2016) metallicity (12+log(O/H) = 8.68 ± 0.09 , $\log(M_{\star}/\mathrm{M}_{\odot}) = 9.1^{+0.3}_{-0.2}$) in the error calculations: $\log(M_{\star}/\mathrm{M}_{\odot}) = 10.1^{+0.5}_{-1.0}$

Из 9 галактик в 4 нашли молекулярный газ

Absorber ID	Z _{abs} a	$\frac{log(N_{HI,abs})}{[cm^{-2}]}$	[Fe/H] _{abs}			
Galaxy (z)	b ^a [kpc/"]	SFR _[OII] ^a [M _⊙ yr ⁻¹]	12 + log(O/H) _l ^a	12 + log(O/H) _u ^a	M _{mol} [10 ⁹ M _☉]	τ _{dep} [Gyr]
Q2131z043 _{HI}	0.43	19.5 ± 0.15 b	> -0.96 a			
Q2131-G1 (0.42974)	52/9.2	2.00 ± 0.2	8.98 ± 0.02	-	$3.52^{+3.95}_{-0.31}$	< 4.15
Q2131-G2 (0.4307 a)	61 / 10.7	0.20 ± 0.1	8.32 ± 0.16	-	< 3.64	< 36.37
Q1232z039 _{HI}	0.3950	20.75 ± 0.07 °	< -1.31 °			
Q1232-G1 (0.3953 a)	8 / 1.5	0.67 ± 0.09	8.02 ± 0.06	8.66 ± 0.04	< 6.09	< 8.02
Q1232z075 _{MgII}	0.7572	18.36 ^{+0.09} _{-0.08} d	> -1.48 ^d			
Q1232-G2 (0.7566 a)	68 / 9.1	2.58 ± 0.23	8.19 ± 0.19	8.54 ± 0.19	< 18.31	< 7.80
Q0152z038 _{HI}	0.3887	<18.8 e	> -1.36 ^a			
Q0152-G1 (0.3826 a)	60 / 11.5	1.04 ± 0.03	8.65 ± 0.09	-	< 2.80	< 2.78
$\rm Q1211z039_{HI}$	0.3929	$19.46\pm0.08~^{\rm b}$	> -1.05 ^a			
Q1211-G1 (0.3928 a)	37 / 6.8	4.71 ± 0.08	8.16 ± 0.01	8.48 ± 0.01	< 6.78	< 1.47
Q1130z031 _{HI}	0.3127	21.71 ± 0.07 ^f	-1.94 \pm 0.08 g 1			
Q1130-G2 (0.3127 a)	44 / 9.5	0.44 ± 0.3	8.77 ± 0.05	-	11.03 ^{+1.44} _{-1.27}	25 ⁺²¹ ₋₂₀
Q1130-G4 (0.3126 a)	82 / 17.7	> 0.40	< 8.65	-	> 8.88	≥ 22.19
Q1130-G6 (0.3115 a)	98 / 21.3	1.14 ± 0.7	8.94 ± 0.16	-	2.65 ^{+1.20} _{-0.82}	2.3+1.4

We study the kinematics of both the ionised and molecular gas of the detected galaxy using the 3D fitting algorithm GalPak^{3D} (Bouché et al. 2015). The algorithm assumes a disk parametric

The derived inclination of the molecular and ionised gas in Q2131-G1 are $i_{\rm [OIII]}=60.5\pm1.2^{\circ}$ and $i_{\rm CO}=47^{+10^{\circ}}_{-1}$. The position angles (PA) are PA $_{\rm [OIII]}=65\pm1^{\circ}$ and PA $_{\rm CO}=59\pm2^{\circ}$. We conclude that the gas phases in Q2131-G1 are aligned directionally.

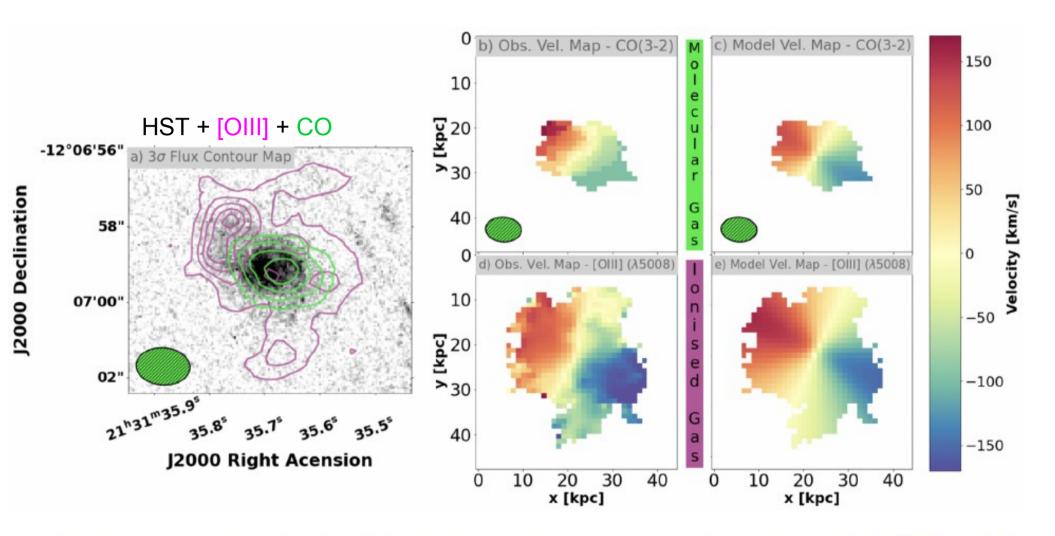


Figure 2: Contour plot and velocity maps of Q2131-G1. Ionised gas contour plot and velocity maps are based on [OIII] 15008. Molecular

MUSE observations are described in Péroux et al. (2017). The authors report the following: The maximum circular velocity is well constrained at $V_{\text{max}} = 200 \pm 3$ km s⁻¹, the half light radius is found to be $r_{1/2} = 7.9 \pm 0.1$ kpc, the derived position angle is PA = $65 \pm 1^{\circ}$ and the inclination is $i_{CO} = 60.5 \pm 1.2$. Based on the derived flux,

Металличность для галактики и "абсорбера" более-менее согласуются (в рамках о разумных градиентах металличности)

А вот в кинематике - значимое синее смещение СО и [OIII]

Итого:

В Q2131-G1 в ионизованном газа видны спиральные рукава и приливные (?) структуры, тянется аж на 40 кпк. А молекулярный газ – всего на 20 кпк

Кинематика хорошо совпадает

Невысокая доля темной материи внутри r1/2: D_DM=0.24-0.54

- Довольно высокое время исчерпания газа для всей выборки : 1.4-37(!) Gyr, Сильно выше, чем в галактиках, выделяемых по эмиссиям – особенность поиска по HI-DLA системам

Скучновато....