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ABSTRACT

Formation process(es) of galactic bulges are not yet clarified although several mechanisms have been proposed. In a previous
study, we suggested one possibility that galactic bulges have been formed from the cold gas inflowing through surrounding hot
halo gas in massive dark matter halos at high redshifts. It was shown that this scenario leads to the bulge-to-total stellar mass
ratio increasing with the galaxy mass, in agreement with the well-known observed trend. We here indicate that it also reproduces
recent observational results that the mean stellar age of the bulge increases with the galaxy mass while the age gradient across
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Figure 2. Panels ab: Star formation rate (SFR) in the least
massive and the most massive galaxies. Blue, orange, and red

indicate SFR for thin disc, thick disc, and bulge, respectively. SFR

is averaged over 20 successive time steps (0.28 Gyr) to smooth out
the short timescale fluctuations arising in the model calculation,
and given in arbitrary units. Panels ¢.d: Time variation of the
mass fraction relative to the total stellar mass of thin disc (blue),
thick disc (orange), and bulge (red).
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Figure 2. Star formation rate for the bulge component as a function of time,
with thicker black lines indicating models with larger virial masses at present.
Plotted values are running means with the width of 0.28 Gyr. Tiny spikes are
caused by the numerical method used in the evolution model and do not affect
our conclusions. Red lines indicate the star formation history for which delay
of twenty dynamical times is taken into account.
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Figure 3. Model bulge fractions compared with three sets of observations. Black dots connected by solid lines are model results, whereas observational data
are represented by small dots. Green circles and pluses indicate, respectively, the running mean and median in the mass bin having the width of 0.25 dex and
moved by every 0.125 dex in the galaxy total stellar mass. In the left and central panels, orange symbols denote means and medians only for classical bulges
(orange small dots) defined to have the Sersic index larger than 2 in i-band and H-band, respectively. The orange lines indicate the number fraction of classic
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bulges in each mass bin. Breda & Papaderos (2018) do not derive the Sersic index and no classification of bulges is possible.
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Katkov et al.: NGC 254

Star formation in outer rings of SO galaxies.
IV. NGC 254 — a double-ringed S0 with gas counterrotation
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ABSTRACT

Aims. Though S0 galaxies are usually considered “red and dead”, they often demonstrate star formation organized into ring structures.
We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies.

Methods. Here we investigate the nearby moderate luminosity SO galaxy NGC 254 using long-slit spectroscopy taken with the
South African Large Telescope and publicly available imaging data. Applying a full spectral fitting, we analyzed gaseous and stellar
kinematics as well as ionized gas excitation and metallicity and stellar population properties resolved by radius. An advanced approach
of simultaneous fitting spectra and photometric data allowed us to quantify the fraction of hidden counter-rotating stars in this galaxy.
Results. We found that the ionized gas is counter-rotating with respect to the stars throughout NGC 254 disk, indicating an external
origin of the gas. We argue the gas-rich galaxy merger from retrograde orbit as a main source of counter-rotating material.
The star formation fed by this counter-rotating gas occurs within two rings, an outer ring at R = 55 — 70” and an inner ring at
R = 18". The star formation rate is weak, 0.02 solar mass per year in total, the gas metallicity is slightly subsolar. We estimated
that the accretion of the gas occurred about 1 Gyr ago, and about 1 % of all stars have formed in sita from this gas being also
counter-rotating.

Kev words. calaxies: structure — calaxies: evolution — calaxies. ellintical and lenticular — salaxies: star formation



NGC 254, Legacy Survey
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Fig. 3. cavmt modelling of 3.6 ym image of NGC 254, From left to right — galaxy image, model and residuals. Note that galaxy image and
model are shown in logarithmic scale, while residuals in the linear scale.
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Fig. 8 Emission line flux distribution along the slit. Starlight contribu-
tion is removed. Brown dashed lines show locations of the stellar inner
ring & = +25”. Color stripes correspond to the same radial ranges
as shown in Fig. 7.
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