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ABSTRACT

The formation details of globular clusters (GCs) are still poorly understood due to their old ages and the lack of detailed
observations of their formation. A large variety of models for the formation and evolution of GCs have been created to improve
our understanding of their origins, based on GC properties observed at z = 0. We present the first side-by-side comparison of six
current GC formation models with respect to their predictions for the GC ages and formation redshifts in Milky Way (MW)-like
galaxies. We find that all the models are capable of forming most of the surviving GCs at more than 10 Gyr ago, in general
1 agreement with the observation that most GCs are old. However, the measured MW GC ages are still systematically older than
those predicted in the galaxies of four of the models. Investigating the variation of modelled GC age distributions for general
MW-mass galaxies, we find that some of the models predict that a significant fraction of MW-mass galaxies would entirely lack
a GC population older than 10Gyr, whereas others predict that all MW-mass galaxies have a significant fraction of old GCs.
This will have to be further tested in upcoming surveys, as systems without old GCs in that mass range are currently not known.
Finally, we show that the models predict different formation redshifts for the oldest surviving GCs, highlighting that models

currently disagree about whether the recently observed young star clusters at high redshifts could be the progenitors of today’s
GCs.
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Figure 1. Age distributions of observed GCs in the MW. The ages are taken
from Forbes & Bridges (2010), Dotter et al. (2010, 2011), VandenBerg et al.
(2013), and Kruijssen et al. (2019b). The ages from the latter work are
the mean ages from the other three studies, which we show as the black
distribution. The smooth curves are determined from the sum of normal
distributions at the individual age measurements with standard deviations
equal to the individual age uncertainties.
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Table 1. Galaxy properties of the GC model studies and from the our MW: the number of MW-like galaxies analysed (Ngy), their virial and stellar mass ranges
(M, and M), the number of GCs contained in the individual galaxies { Ngc ). the mean and standard deviation of Nge, and the mean and standard deviation of
the ages of all the GCs. The virial mass definitions are Mgy for Renaud et al. (2017), Kruijssen et al. (20194), Reina-Campos et al. (2022), and Valenzuela et al.
(2024): total mass of the system according to the applied subhalo finder for Chen & Gnedin (2024b): and halo mass for De Lucia et al. (2024). The GC-limited
sample of De Lucia et al. (2024) is further selected according to Ngc. Note that the differences in GC number and average GC age are the result of the different
calaxy samples. For the values measured from observations, the virial mass estimate is from Bobylev & Baykova (2023), which has also been proposed to be
larger by other more recent works (e.g., Kravtsov & Winney 2024), the stellar mass from Licquia & Newman (2015), Ngc from Garro et al. (2024), and we
computed {fuge ) using the mean GC ages from Kruijssen et al. (2019b).

Model Study N, My /(10" Mg)  M./(10"M) Nge {Ngc) (tage ) /GYT
Stellar particle tracer Renaud et al. (2017) | 1.3 4.1 (at z =0.5) - - 11.4+0.7
E-MOSAICS Kruijssen et al. (2019a) 6 0.7-2.2 0.5-4 60-330 130 £ 100 10.3 £2.1
EMP-Pathfinder Reina-Campos et al. (2022 21 0.6-2.3 0.4-6.5 140-1250 400 + 240 8.1 +£3.5

Rapid mass growth Chen & Gnedin (2024b) 3 1.1-1.4 4-8 160180 170 £ 10 11.2+1.4
Two-phase De Lucia et al. (2024) 12884 0.8-3 2-8 0-11100 290+ 3590 9.5+ 1.7

Two-phase (GC-limited)  De Luciaetal. (2024) 1140 0.8-3 2-8 170-250 205+£25 10.8 + 1.1
Dual formation pathway ~ Valenzuela et al. (2024) 21 1-2 .64 220=700 400+ 120 11.1+2.3

MW Observations - 1.1 + 0.4 6.1+1.1 =200 - 11.9+1.3
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Figure 4. Formation redshift distributions of surviving modelled GCs in MW-analogues. The formation redshifis are from Renaud et al. (2017), Kruijssen e al.
(2019a), Reina-Campos et al. (2022), Chen & Gnedin (2024b), De Lucia et al. (2024}, and Valenzuela et al. (2024). The short vertical black lines denote the
redshifis of star clusters from the strongly lensed systems observed by Vanzella et al. (2023), Fujimoto et al. {2024}, Messa et al. (2024a), Mowla et al. (2024),
and Adamo et al, (2024), in increasing redshift order. The dotted blackberry curve for Renand et al. {2017} is the combined age distribution of the in-situ (red)
and acereted (blue) GO age distributions, assuming an equal number of wnderlying GCs for each group. As the GC ages for the galaxies from De Lucia ¢t al.
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ABSTRACT

The most massive early-type galaxies (ETGs) are known to form through numerous galaxy mergers.
Thus, it is intriguing to study whether their formation in low-density environments, where nearby
companions are almost absent, is associated with mergers, which are directly traced by tidal features.
Using the 436 most massive ETGs with M., > 10112 M at z < 0.04, we determine the variation
in the fraction of massive ETGs with tidal features (fr) across different environments and verify
whether the most massive ETGs commonly have tidal features in very low density environments. Qur
main discovery is that the most massive ETGs exhibit tidal features more frequently in lower-density
environments. In the highest-density environments, like galaxy clusters, fr is 0.21 + 0.06, while in
the lowest-density environments it triples to 0.62 £ 0.06. This trend is stronger for more extremely
massive ETGs, with fr reaching 0.92 + 0.08 in the lowest-density environments. One explanation for
our finding is that the most massive ETGs in lower-density environments have genuinely experienced
recent mergers more frequently than their counterparts in higher-density environments, suggesting
that they possess extended formation histories that continue into the present. Another possibility
is that tidal features last shorter in denser environments owing to external factors inherent in these
environments. Our additional findings that massive ETGs with bluer u— r colors are a more dominant
driver of our main discovery and that dust lanes are more commonly observed in massive ETGs in
low-density environments imply that gas-abundant mergers primarily contribute to the increased rate
of recent mergers in low-density environments.
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3. ENVIRONMENTS OF GALAXIES

In this study, we use two definitions to characterize
the environments of galaxies. One is the surface num-
ber density of galaxies, calculated within the distance to
the 10th-nearest galaxy, and another is the surface stel-
lar mass density, determined using the 10 nearest neigh-
boring galaxies. Both are calculated using NSA catalog
galaxies with log(Mga /Mg ) = 9.4 within a rest-frame
velocity window of £1000 km s~ centered on the red-
shift of each galaxy in the massive ETG sample.*
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Figure 7. Diagram of u — r color vs. stellar mass. The
contours denote the density of all galaxies within 0.01 < z <
0.04, with darker contours indicating higher densities. Mas-
sive ETGs with log( Maa:/Mg) > 11.2 are plotted as black
circles. We represent the median values of colors and stel-
lar masses for massive ETGs in six different environments
(quantified by log Xr) using the circles of different colors.
These six environment, bins correspond to those used in Sec-
tion 5. The units of X, are Mg f‘v‘IpC_z.



PesynbtaTel (No DESI, oo 271 mag
C KB. CEK)
* [1punmnBHbLIE CTPYKTYPbI (XBOCTbI, MOTOKM,

obonoykn) —y 195, unn 44.7% (ons
CTaTUCTUKK ocTaBneHo 137).

* [bineBble NPoOXUnkn —y 53 (12.2%).



Declinatian [Mpc]

Figure 1. Examples of massive ETGs without tidal features, First row: color images from SDS5
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bar in the color image denotes the angular scale of the image. Second row: r-band deep images of the DESI Legacy Survey.

The angular scale of the deep image is identical to that of the color image in the first row, Third row: two-dimensional maps

illustrating the spatial distribution of galaxies within ~ 1 Mpe from each massive ETG. The green star at the center of the map

represents the location of the massive ETG, whereas the black filled circles denote other galaxies in the environment. The size
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Figure 8. Fraction of massive ETGs with tidal features {f7) as a function of log X (left panel) and log Xy (right panel).
The fraction fr is caleulated in six different environment hins corresponding to the percentile ranges of 0% -15%, 15%-30%,
30%-50%, S0%-T0%, T0%-00%, and 90%-100% for both £;; and £,; of massive ETGs with log{M, . /Mz) > 11.2. The gray
vertical lines represent the boundaries of the bins, The error bar indicates the standard error of the proportion. Displayved in
the top panels are histograms of the distributions of log X3 and log X, for ETGs with tidal features and those without tidal
features.

The fraction fr is defined as {7 = N/ Ng1o. where N¢ statistical sipnificance of the difference in the distribu-
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Figure 10. Fraction of massive ETGs with dust lanes ( fp) as a function of log X and log 319. The fraction fp is computed
in five different environment bins corresponding to the percentile ranges of 0%-20%, 20%-40%, 40%-60%, 60%-80%, and 80%
100% for both X, and X1y of massive ETGs with log(;"1L1_m-,.f'ﬂi’.\;)} > 11.2. The gray vertical lines denote the boundaries of the
bins. The error bar represents the standard error of the proportion.
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