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Fig. 1. Stellar density distribution in the age-metallicity plane for volumes 1, 5, and 8 (i.e. from the plane to 50 pc, 0.2 to 0.3 kpc, and 0.5 to
0.6 kpc, respectively above and below the plane) as representative examples of the reported super metal-rich populations (for these we use the
Lallement et al. 2022 dust map). Coloured polygons delimit the areas in the age-metallicity plane used to quantify the z-profiles in Fig. 2. Note
that a logarithmic scale has been used to represent the number of stars, in order to enhance these relatively low intensity features.
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Fig. 2. z-profile of number density of stars for the five different events
of super metal-rich star formation. Such events are defined using the
polygons depicted in Fig. 1. We show the profiles using two different
extinction maps, Bayestar map (Green et al. 2019, dashed lines), and
Lallement et al. (2022) map (solid lines, L22). Given incompleteness af-
fecting the observed samples together with quality cuts, absolute values
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quadrant in the Bayestar coverage (see Green et al. 2019). Colours fol-
low Fig. 1.
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Fig. 3. Stellar age-metallicity distribution of stellar particles for a solar neighbourhood-like selection of stars from AuS18. The distribution of stars
are colour-coded according to number density (left) and birth radius (right). Pericentric passages of subhalo 6281 are shown as pink squares.
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Fig. 4. Kiel diagram of the disc super metal-rich population with [M/H]=0.4+0.1 dex. We divide the sample in two based on their value of v:
slow (purple) and fast (orange) stars (see Fig. 5). Solar-scaled BaSTI isochrones of 13.5, 10, 7, 4, 2, 1, and 0.6 Gyr (red, orange, pistacho, green,
cyan, blue, and purple, respectively) are overlaid on the data. Left: Whole diagram. Right: Focusing only on the turn-off region.
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Fig. 5. Orbital properties of the metal-rich stars detected in the high-quality Gaia DR3 GSP-Spec sub-catalogue from Recio-Blanco et al. (2024),
compared with those of a subset of solar-metallicity stars. Left: Distribution of v, velocities for metal-rich (red, empty histogram) and solar-
metallicity (grey histogram) stars. From the shape of the metal-rich stars histogram we divide the sample in slow (|v4| below 205 km/s) and fast
(Ivy| above 205 km/s) stars. Middle: Distribution of guiding radius (from Recio-Blanco et al. 2024). Right: Distribution of eccentricity (from
Recio-Blanco et al. 2024). For these last panels, we divide the sample in solar metallicity (grey), slow, metal-rich stars (purple) and fast, metal-rich
stars (orange).
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ABSTRACT

The extremely-low-luminosity, compact Milky Way satellite Ursa Major III / UNIONS 1
(UMalll/Ul; Ly = 11 Le; a12 = 3 pc) was found to have a substantial velocity dispersion at
the time of its discovery (o, = 3.7‘_*{:3 km s~1!), suggesting that it might be an exceptional, highly
dark-matter-dominated dwarf galaxy with very few stars. However, significant questions remained
about the system’s dark matter content and nature as a dwarf galaxy due to the small member sample
(N = 11), possible spectroscopic binaries, and the lack of any metallicity information. Here, we present
new spectroscopic observations covering N = 16 members that both dynamically and chemically test
UMalII/U1’s true nature. From higher-precision Keck/DEIMOS spectra, we find a 95% confidence
level velocity dispersion limit of o, < 2.3 km s—!, with a ~120:1 likelihood ratio favoring the expected
stellar-only dispersion of o, ~ 0.1 km s~! over the original 3.7 km s~! dispersion. There is now no
observational evidence for dark matter in the system. From Keck/LRIS spectra targeting the Calcium
IT K line, we also measure the first metallicities for 12 member stars, finding a mean metallicity of
[Fe/H] = —2.65 £ 0.1 (stat.) & 0.3 (zeropoint) with a metallicity dispersion limit of o[pe/m < 0.35 dex
(at the 95% credible level). Together, these properties are more consistent with UMalll/Ul being
a star cluster, though the dwarf galaxy scenario is not fully ruled out. Under this interpretation,
UMallII/U1 ranks among the most metal-poor star clusters yet discovered and is potentially the first
known example of a cluster stabilized by a substantial population of unseen stellar remnants.
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C. CAII K SPECTRA FOR ALL LRIS PROGRAM TARGETS

In Figure 6, we present the complete set of LRIS spectra used for our metallicity analysis.

T —— 200 =T —————rr;
i TN T E
™) ]

gof SR 1s _

O L / 1 4w ]

< 1 1Nt -

et - 11ig Pl 1E& g 3

g : 111 | ] < 3 ]

< i :'\ /I' 1> oF ik

QA 005} « $.9./ 4 2 - ;

- N ; -50F 3

- Sn% E s ]

I {1 -w0f =

I -= [2,4,6] x a5 [ ]

FETTIUIE E. — — ——— — L ]

—0.15 PP | M T,

8.15 0.05 —0.05 —0.15 —150 00 Tot
Aaggoo (deg) Tproj (arcmin)

16 P 9 T

L 4 6-— —-

18 -1 [ ]

8 [ 1 3F 'é' 7]

S 20 4 = I ]

= F 1 g oF o 3

o | 1 E | ]

n - 1 ~ L J

= 22 4 =-3F .

I ] 6k 3

24 1 E ]

Cisiaa T i 5o N g g ] Y PP I I PP P P

-0.5 0.0 0.5 1.0 1.5 -9 -6 -3 0 3 6 9

LS DR10 (g — 7)o Mo (mas yr~1)

Figure 5. Four diagnostic views of our complete, dual-epoch DEIMOS spectroscopic sample. In each panel,
UMallI/U1 members are shown in gold while non-members are shown as grey crosses. (Top Left) Spatial positions of stars in a
0.3° x 0.3° square region centered on UMalII/U1. Contours depicting 2,4,6x the system’s semi-major axis (a;/2) are shown in
blue. (Top Right) Velocity vs. projected radius for the same samples of stars. (Bottom Left) Color-magnitude diagram based
on Legacy Surveys DR10 photometry (Dey et al. 2019), with a 7 = 12 Gyr, [Fe/H] = —2.19 PARSEC isochrone overplotted in
blue. We draw attention to the impressive depth of the DEIMOS observations — reaching go ~ 24. (Bottom Right) Gaia DR3
proper motion vector-point diagram for the subset of brighter stars with measurements available. Although three stars have
larger proper motion errors, there is a clear clustering among the remaining stars.
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Figure 1. The velocity distribution of UMalIl/Ul members from the re-reduced 2023 epoch (left) and the deeper
April 2025 epoch (right), all from Keck/DEIMOS. The original 2023 epoch identified 11 members; in 2025 we successfully
re-observed 10 of these stars with DEIMOS and added five new members (including two with good precision and three with
larger uncertainties). In the deeper second epoch, which yielded significantly more precise measurements, we observe a clear
regression to the mean in most member stars. The binary star that we monitored (S24_M2; in magenta) remains a clear outlier
in each panel, but we note that the evidence for binarity is based primarily on the GMOS/MagE/HIRES data not shown here.
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Figure 2. Stringent limits on the velocity dispersion of Ursa Major III/UNIONS 1. We display the normalized
profile likelihoods for the velocity dispersion (o) for the re-reduced 2023 DEIMOS observations (left) and the new 2025 DEIMOS
observations (right), using different member subsets in each case. The left panel reproduces the conclusions of S24, demonstrating
the clearly-resolved dispersion when all 11 original members were included (solid orange). In the righthand panel, we display
our primary constraints from this work for the Complete Epoch 2 (blue) and Pure Epoch 2 (red) samples. The likelihood in
both cases is maximized for the smallest allowed dispersions, and the original dispersion of o, = 3.7 kms ™" is clearly ruled out.
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Figure 3. The absence of a significant metallicity spread in UMalIIl/U1l. (Left) Color-magnitude diagram of the
12 UMallI/U1 stars observed with Keck/LRIS (using PanSTARRS-1 photometry). We box three stars with similar stellar
parameters that are useful for tests of chemical homogeneity. (Center) The LRIS spectra for the three boxed stars (524 M2,524 M3,
and S24 M4) covering the Calcium H and K lines. The three spectra are very similar, suggesting similar metallicities for these
three stars given their similar surface gravities and temperatures ([Fe/H] = —2.87 £+ 0.33, —2.90 & 0.34, —2.99 + 0.34). See
Figure 6 for the LRIS spectra of the remaining nine stars. (Right) Marginalized posterior probability distribution on the intrinsic
metallicity dispersion of UMalll/Ul (ope/u)) derived from the complete LRIS sample of 12 member stars.
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Figure 4. UMalII/U1’s low velocity dispersion limit and metallicity dispersion limit in the context of the faint,
compact Milky Way satellite population. We compare our new measurements for the system to a carefully curated sample
of systems with My > —3.5; 712 < 25 pc for which there are both o(g./u) and o, measurements available (top sub-panel) or
only a 0, measurement (bottom sub-panel); we exclude systems with possibly contaminated/impure stellar memberships. These
include confirmed dwarf galaxies (filled blue), ambiguous compact systems (unfilled red or blue, for systems more likely to be
clusters or dwarfs, respectively; magenta if entirely unclear), and select globular clusters (black). Our new limits for UMallII/U1
rank among the strongest of any ultra-faint system in this size and luminosity regime; the only system with stronger limits for
both types of dispersion is Tucana III. See Appendix D for a discussion of the comparison sample (and associated references).



BbiBOA:

* Ursa Major lII/UNIONS 1 — He kapfnkoBas
ranaktuka, y Hee HeT AMHaAMUNYECKUX
NPU3HaKoB TEMHON MaTepun ( o <2.3 KM/C
Npu BblIKMAblIBaHUM ogHOWU ABOUHON N < 1.4
KM/C Npu BbIKMAbIBAHUN 4X OBOUHbIX).

 Kpome Toro, HeT pa3bpoca
METarIM4YHOCTEN 3BE3M, KaK Y KapJsIMKOBbIX
ranakTuk.

* [loxoxe, 31O WapoBoe (?) ckonsieHne:
[Fe/H]=-2.65, T=12 mnpAa neTt, macca <104



